首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   202篇
  国内免费   164篇
测绘学   23篇
大气科学   82篇
地球物理   562篇
地质学   916篇
海洋学   94篇
天文学   192篇
综合类   59篇
自然地理   487篇
  2024年   2篇
  2023年   16篇
  2022年   33篇
  2021年   61篇
  2020年   61篇
  2019年   71篇
  2018年   60篇
  2017年   50篇
  2016年   53篇
  2015年   59篇
  2014年   134篇
  2013年   145篇
  2012年   104篇
  2011年   119篇
  2010年   90篇
  2009年   134篇
  2008年   133篇
  2007年   119篇
  2006年   145篇
  2005年   115篇
  2004年   80篇
  2003年   88篇
  2002年   70篇
  2001年   77篇
  2000年   72篇
  1999年   57篇
  1998年   43篇
  1997年   34篇
  1996年   28篇
  1995年   29篇
  1994年   32篇
  1993年   17篇
  1992年   16篇
  1991年   17篇
  1990年   21篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1954年   1篇
排序方式: 共有2415条查询结果,搜索用时 15 毫秒
231.
Laboratory experiments have been carried out for the flow along isobaths of simulated shelf-continental slope geometry. Cases of both homogeneous and linearly stratified fluids are considered and the background flows are sufficiently strong to have the flow near the bottom boundary range from transitional to fully turbulent. The background motions are impulsively started and flows with a coast on the right (spin-down) and on the left (spin-up) are considered. The homogeneous spin-down and spin-up processes are smooth in the sense that no vortical structures were found to be of the order of the slope width or larger. Flows reach equilibrium more quickly for spin-down cases, and this is attributed to secondary flows forced by the basin geometry. All of the stratified experiments exhibited large-scale instabilities as evidenced by the generation of slope and basin scale eddy structures and a much slower decay than their homogeneous counterparts.  相似文献   
232.
Modelling the transfer of heat, water vapour, and CO2 between the biosphere and the atmosphere is made difficult by the complex two-way interaction between leaves and their immediate microclimate. When simulating scalar sources and sinks inside canopies on seasonal, inter-annual, or forest development time scales, the so-called well-mixed assumption (WMA) of mean concentration (i.e. vertically constant inside the canopy but dynamically evolving in time) is often employed. The WMA eliminates the need to model how vegetation alters its immediate microclimate, which necessitates formulations that utilize turbulent transport theories. Here, two inter-related questions pertinent to the WMA for modelling scalar sources, sinks, and fluxes at seasonal to inter-annual time scales are explored: (1) if the WMA is to be replaced so as to resolve this two-way interaction, how detailed must the turbulent transport model be? And (2) what are the added predictive skills gained by resolving the two-way interaction vis-à-vis other uncertainties such as seasonal variations in physiological parameters. These two questions are addressed by simulating multi-year mean scalar concentration and eddy-covariance scalar flux measurements collected in a Loblolly pine (P. taeda L.) plantation near Durham, North Carolina, U.S.A. using turbulent transport models ranging from K-theory (or first-order closure) to third-order closure schemes. The multi-layer model calculations with these closure schemes were contrasted with model calculations employing the WMA. These comparisons suggested that (i) among the three scalars, sensible heat flux predictions are most biased with respect to eddy-covariance measurements when using the WMA, (ii) first-order closure schemes are sufficient to reproduce the seasonal to inter-annual variations in scalar fluxes provided the canonical length scale of turbulence is properly specified, (iii) second-order closure models best agree with measured mean scalar concentration (and temperature) profiles inside the canopy as well as scalar fluxes above the canopy, (iv) there are no clear gains in predictive skills when using third-order closure schemes over their second-order closure counterparts. At inter-annual time scales, biases in modelled scalar fluxes incurred by using the WMA exceed those incurred when correcting for the seasonal amplitude in the maximum carboxylation capacity (V cmax, 25) provided its mean value is unbiased. The role of local thermal stratification inside the canopy and possible computational simplifications in decoupling scalar transfer from the generation of the flow statistics are also discussed.
“The tree, tilting its leaves to capture bullets of light; inhaling, exhaling; its many thousand stomata breathing, creating the air”. Ruth Stone, 2002, In the Next Galaxy
  相似文献   
233.
We have constructed an analytical model of active galactic nuclei (AGN) feedback and studied its implications for elliptical galaxies and galaxy clusters. The results show that momentum injection above a critical value will eject material from low-mass elliptical galaxies, and leads to an X-ray luminosity, L X, that is  ∝σ8−10  , depending on the AGN fuelling mechanism, where σ is the velocity dispersion of the hot gas. This result agrees well with both observations and semi-analytic models. In more massive ellipticals and clusters, AGN outflows quickly become buoyancy dominated. This necessarily means that heating by a central cluster AGN redistributes the intracluster medium (ICM) such that the mass of hot gas, within the cooling radius, should be  ∝ L X(< r cool)/[ g ( r cool)σ]  , where   g ( r cool)  is the gravitational acceleration at the cooling radius. This prediction is confirmed using observations of seven clusters. The same mechanism also defines a critical ICM cooling time of  ∼0.5 Gyr  , which is in reasonable agreement with recent observations showing that star formation and AGN activity are triggered below a universal cooling time threshold.  相似文献   
234.
We present integral field spectroscopy of the nebular line emission in a sample of nine brightest cluster galaxies (BCGs). The sample was chosen to probe both cooling flow and non-cooling flow clusters, as well as a range of cluster X-ray luminosities. The line emission morphology and velocity gradients suggest a great diversity in the properties of the line emitting gas. While some BCGs show evidence for filamentary or patchy emission (Abell 1060, Abell 1668 and MKW 3s), others have extended emission (Abell 1204, Abell 2199), while still others have centrally concentrated emission (Abell 2052). We examine diagnostic line ratios to determine the dominant ionization mechanisms in each galaxy. Most of the galaxies show regions with active galactic nucleus like spectra, however, for two BCGs, Abell 1060 and Abell 1204, the emission line diagnostics suggest regions which can be described by the emission from young stellar populations. The diversity of emission-line properties in our sample of BCGs suggests that the emission mechanism is not universal, with different ionization processes dominating different systems. Given this diversity, there is no evidence for a clear distinction of the emission-line properties between cooling flow and non-cooling flow BCGs. It is not always cooling flow BCGs which show emission (or young stellar populations), and non-cooling flow BCGs which do not.  相似文献   
235.
The dynamics of space debris with very high A/m near the geostationary orbit is dominated by the gravitational coefficient C 22 and the solar radiation pressure. An analysis of the stability of the orbits by the chaos indicator MEGNO and frequency analysis map FAM shows chaotic layers around the separatrix and reveals a web of sub-structures associated to resonances with the annual period of the Sun. This succession of stable thin islands and chaotic layers can be reproduced and explained by a quite simple toy model, based on a pendulum approach, perturbed, through the eccentricity, by the external (Sun) frequency. The use of suitable action-angle variables in the circulation and libration regions of the pendulum allows to point out new resonances between the geostationary libration angle and the Sun’s longitude. They correspond very well (positions, shape, width) to the structures visible on the FAM representations.  相似文献   
236.
The production of coarse sediment in mountain landscapes depends mainly on the type and activity of geomorphic processes and topographic and natural conditions (e.g. vegetation cover) of these catchments. The supply of sediment from these slopes to mountain streams and its subsequent transport lead to sediment connectivity, which describes the integrated coupled state of these systems. Studies from the Northern Calcareous Alps show that the size of the sediment contributing area (SCA), a subset of the drainage area that effectively delivers sediment to the channel network, can be used as a predictor of sediment delivery to mountain streams. The SCA concept is delineated on a digital elevation model (DEM) using a set of rules related to the steepness and length of slopes directly adjacent to the channel network, the gradient of the latter and the vegetation cover. The present study investigates the applicability of this concept to the Western Alps to identify geomorphologically active areas and to estimate mean annual sediment yield (SY) in mainly debris-flow-prone catchments. We use a statistical approach that shows a parameter optimisation and a linear regression of SY on SCA extent. We use a dataset of ~25 years of assessed coarse sediment accumulation in 35 sediment retention basins. In the investigated catchments, sediment transport is governed by several factors, mainly by the extent of vegetation-free areas with a minimum slope of 23° that is coupled to the channel network with a very low gradient of the latter. With our improved framework, we can show that the SCA approach can be applied to catchments that are widely distributed, in a large spatial scale (hectare area) and very heterogeneous in their properties. In general, the investigated catchments show high connectivity, resulting in significant correlations between long-term average yield and the size of the SCA.  相似文献   
237.
Flow velocity is one of the most important hydrodynamic variables for both channelized (rill and gullies) and interrill erosive phenomena. The dye tracer technique to measure surface flow velocity Vs is based on the measurement of the travel time of a tracer needed to cover a known distance. The measured Vs must be corrected to obtain the mean flow velocity V using a factor αv = V/Vs which is generally empirically deduced. The Vs measurement can be influenced by the method applied to time the travel of the dye-tracer and αv can vary in different flow conditions. Experiments were performed by a fixed bed small flume simulating a rill channel for two roughness conditions (sieved soil, gravel). The comparison between a chronometer-based (CB) and video-based (VB) technique to measure Vs was carried out. For each slope-discharge combination, 20 measurements of Vs, characterized by a sample mean Vm, were carried out. For both techniques, the frequency distributions of Vs/Vm resulted independent of slope and discharge. For a given technique, all measurements resulted normally distributed, with a mean equal to one, and featured by a low variability. Therefore, Vm was considered representative of surface flow velocity. Regardless of roughness, the Vm values obtained by the two techniques were very close and characterized by a good measurement precision. The developed analysis on αv highlighted that it is not correlated with Reynolds number for turbulent flow regime. Moreover, αv is correlated neither with the Froude number nor with channel slope. However, the analysis of the empirical frequency distributions of the correction factor demonstrated a slope effect. For each technique (CB, VB)-roughness (soil, gravel) combination, a constant correction factor was statistically representative even if resulted in less accurate V estimations compared to those yielded by the slope-specific correction factor.  相似文献   
238.
239.
The peculiar velocity field for 907 galaxies with heliocentric radial velocities VH ≤ 3000 km/s is examined. The data are divided into three samples, organized according to the principles behind the method for determining the distance to the galaxies: the luminosity of the tip of the red giant branch (TRGB), fluctuations in the surface brightness, and the infrared Tully-Fisher relation for spiral galaxies viewed edge-on. The latter sample includes 410 galaxies. For determining the distance to the galaxies in this sample, additional regressors were introduced into the Tully-Fisher relation, in particular the “color index” K-m21, which make it possible significantly to reduce the dispersion with respect to the regression curve. All three samples showed good agreement in the peculiar velocity distribution. Based on each of these samples, as well as on the combined sample, detailed maps of the field of peculiar velocities of the galaxies are constructed for VH ≤ 3000 km/s. An analysis shows that most of the observed features of this map can be explained by large-scale density variations in the galactic distribution. __________ Translated from Astrofizika, Vol. 51, No. 3, pp. 409–422 (August 2008).  相似文献   
240.
I discuss the status of the soft X-ray transient model. First, I discuss and then compare with observations the assumption that the geometrically thin disc evaporates into an ADAF. Second, I address the problems created by the recent determinations of the distance to SS Cyg, according to which the disc instability model does not apply to this famous dwarf-nova, thus casting doubt on the application of this model to any system at all.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号