首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   14篇
  国内免费   5篇
大气科学   30篇
地球物理   6篇
地质学   2篇
海洋学   2篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1998年   3篇
  1994年   1篇
  1993年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
This study investigates an abnormal artificially triggered lightning event that produced two positive upward propagations: one during the initial stage (i.e., the upward leader (UL)) and the other after a negative downward aborted leader (DAL). The triggered lightning was induced in a weak thunderstorm over the experiment site and did not produce a return stroke. All of the intra-cloud lightning around the experiment site produced positive changes in the electric field. The initial stage was a weak discharge process. A downward dart leader propagated along the channel produced by the first UL, ending at a height of approximately 453 m and forming a DAL. Under the influence of the DAL, the electric field at a point located 78 m from the rod experienced a steady reduction of about 6.8 kV m-1 over 5.24 ms prior to the initiation of a new upward channel (i.e., the second upward propagation (UP)). The second UP, which started approximately 4.1 ms after the termination of the DAL and propagated along the original channel, was triggered by the DAL and sustained for approximately 2.95 ms. Two distinct current pulses were superimposed on the current of the second UP. The first pulse, which was related to the sudden initiation of the second UP, was characterized by a more rapid increase and decrease and a larger peak value than the second pulse, which was related to the development of the second UP into the area affected by the DAL. The second UP contained both a similar-to-leader process and a following neutralization process. This study introduces a new type of triggering leader, in which a new upward discharge is triggered in an established channel by an aborted leader propagating along the same channel with opposite polarity and propagation direction.  相似文献   
22.
运用改进后的三维多先导模型, 允许高矮建筑物上均可以始发上行先导, 对多次地闪的连接过程进行模拟。结果表明: 矮建筑物始发上行先导和被击中的概率较小, 高建筑物对矮建筑物上行先导的始发具有较明确影响。建筑物间的高度差是影响上述连接过程的主要因子, 当建筑物间高度差较小时, 高建筑物对矮建筑物的屏蔽效应不明显, 下行先导通道的相对位置对矮建筑物是否优先始发上行先导存在影响; 随着建筑物间高度差的增加, 矮建筑物难以优先始发上行先导, 只在下行先导通道明显偏向矮建筑物时, 矮建筑物才可能始发上行先导, 并有一定概率与下行先导连接形成回击; 当建筑物间高度差超过某阈值后, 矮建筑物既不会始发上行先导, 更不会被击中。  相似文献   
23.
24.
用VLF/VHF信号大容量采集系统观测云地闪电放电过程   总被引:3,自引:0,他引:3  
简述了一种高分辨、大容量闪电VLF/VHF信号记录系统,报道了一次包含12次对地回击、平均回击间隔70ms、持续时间超过800 ms的地闪放电过程的VLF/VHF辐射波形全景以及分析结果.这一个典型事例揭示了一些有趣的现象:(1)这次过程的头5 ms出现了强烈的VLF双极性大脉冲序列,标志着云内初始击穿过程启动;对应于一系列VLF辐射事件出现了强烈的VHF辐射爆发,总体上看,前380 ms期间VHF辐射异常强烈,呈现为间歇式准连续辐射,之后强烈VHF辐射则更多地表现为分立脉冲式爆发特征.(2)与回击主电流峰期间VHF辐射较弱不同,地闪最强的VHF辐射来自初始击穿过程和回击后云内放电通道扩展或者新通道形成过程;在初始击穿阶段和回击间歇期,出现了不止一次强烈的VHF辐射爆发并不伴随明显的VLF辐射.(3)回击间歇期间一类云中放电过程产生一系列半宽为3~4μs左右、出现频率约105Hz的VLF快脉冲串,整个脉冲串持续时间约1ms,频谱峰值区域在60~90 kHz,并伴随较强的VHF辐射,这些特征都与直窜先导特征一致.很可能这是一种云内K事件.(4)还给出了江淮地区地闪过程回击VLF/VHF辐射波形的统计特征,统计还显示当相继两次回击间隔小于40 ms时后面回击幅度倾向于比前面回击弱,当回击间隔时间大于100 ms时,后面回击比前面回击强的可能性大.  相似文献   
25.
In this paper, total lightning data observed by SAFIR3000 3-D Lightning Locating System combined to radar data to analyze characteristics of lightning activity and electric structure of a hailstorm that occurred in Beijing on 31 May 2005.The results indicated that there were two active periods for the lightning activity during the hailstorm process. The hail shooting was found in the first period. After the end of the hail shooting,lightning frequency decreased suddenly. However, more active lightning activities occurred in the second period with lots of them appearing in the cloud anvil region. The peak of the lightning frequency came about 5 min prior to the hail shooting. Only 6.16\% of the total lightning was cloud-to-ground (CG)lightning, among which 20\% had positive polarity. This percentage was higher than that in normal thunderstorms. In addition, heavier positive CG lightning discharge occurred before rather than after the hail shooting. In the stage of the hail shooting, the electric structure of the hailstorm was inverted, with the main negative charge region located around the -40℃ level and the main positive charge region around the -15℃ level. In addition, a weak negative charge region existed below the positive charge region transitorily. After the hail shooting, the electric structure underwent fast and persistent adjustments and became a normal tripole and lower levers with positive charge in the upper levels and negative charge in the middle level. However, the electric structure was tilted under the influence of the westly wind in the middle and upper levels. The lightning activity and electric structure were closely related to the dynamic and microphysical processes of the hailstorm. It was believed that severe storms with stronger updrafts were more conducive to an inverted tripolar electric structure than normal thunderstorms,and the inverted distribution could then facilitate more positive CG lightning in the severe storms.  相似文献   
26.
随机性与电环境特征对地闪击地点影响的数值模拟   总被引:7,自引:0,他引:7  
本文利用已有的随机放电参数化方案,结合四次探空资料,进行了12.5 m的高分辨率二维雷暴云数值模拟实验,得到了各种雷暴云电荷结构下的地闪个例,并就地闪击地点与空间电荷、电位分布之间的相互关系进行了分析.结果表明:(1)由空间电荷唯一确定的电位分布决定了先导的传播最大趋势,而闪电传播的随机性所带来的地闪击地点的不确定范围被限制在3 km之内,利用动态聚类法迭代得出的三个击地点位置之间的差为1 km左右.(2)负地闪的初始点与击地点的位置差主要分布在0~6 km范围内,且93%的负地闪分布在0~4 km范围内,正地闪的分布相对较广,0~3 km范围内占48%,3~6 km范围内占34%,6~10 km范围内占18%.(3)正、负地闪主要产生于离地面最近的一对电荷堆之间,其起始高度越高,初始点与击地点位置差分布越广;另外,产生于三级性雷暴云电荷结构下的正地闪,其起始于上部的主正电荷堆与中部主负电荷堆之间,由于下行正先导会绕过底部的次正电荷堆,因此其击地点与初始点的距离基本在6 km以上.  相似文献   
27.
针对不规则脉冲簇难以判别问题,将多尺度熵应用于不规则先导分析中,探讨闪电信号不规则脉冲分析应用中多尺度熵关键参量的选择方法。在此基础上,将不规则先导与直窜先导及梯级先导闪电信号的多尺度熵进行比较。统计分析表明:不规则先导和直窜先导熵值随尺度先增加后趋于平稳,但熵值有很大差异;梯级先导熵值随尺度变化不明显,整体呈增长趋势,与不规则先导的熵值在大于3的尺度上也有所差异,因此当尺度大于3时可将熵值大于1.5的先导归类为不规则先导,熵值小于1.5的先导归类为梯级先导或直窜先导。不规则先导的特征熵平均值为2.0~2.1,最大值范围为2.6~2.8,最小值范围为1.51~1.59。  相似文献   
28.
广东一次雷暴过程负地闪先导的电学特征分析   总被引:2,自引:0,他引:2  
利用 0 .0 8μs时间分辨率的大容量慢天线电场变化测量系统在广东从化地区一次雷暴过程中观测得到的 44次负地闪电场变化波形 ,对负地闪回击前 2 0 0 μs内的先导电场变化波形进行了分析。发现负地闪首次回击前的先导电场变化波形 ,按最后一个先导脉冲与相应回击间电场变化特征大致可分为三类。通常负地闪先导过程由若干脉冲式变化组成 ,首次回击前先导脉冲间的平均时间间隔为 1 5.8μs(均方差 5.3μs) ;继后回击前直窜 -梯级先导脉冲间的平均时间间隔为 9.4μs(均方差 5.5μs)。首次回击前最后一个先导脉冲与首次回击间的平均时间间隔为 1 2 .7μs(均方差 7.8μs) ,最后一个先导脉冲幅值与回击峰值之比的平均值为0 .1 (均方差 0 .0 4 ) ,且两者之间有很好的相关性 ,并用回击传输线模式对这一关系进行了解释。  相似文献   
29.
Action to tackle the complex and divisive issue of climate change will be strongly influenced by public perception. Online social media and associated social networks are an increasingly important forum for public debate and are known to influence individual attitudes and behaviours – yet online discussions and social networks related to climate change are not well understood. Here we construct several forms of social network for users communicating about climate change on the popular microblogging platform Twitter. We classify user attitudes to climate change based on message content and find that social networks are characterised by strong attitude-based homophily and segregation into polarised “sceptic” and “activist” groups. Most users interact only with like-minded others, in communities dominated by a single view. However, we also find mixed-attitude communities in which sceptics and activists frequently interact. Messages between like-minded users typically carry positive sentiment, while messages between sceptics and activists carry negative sentiment. We identify a number of general patterns in user behaviours relating to engagement with alternative views. Users who express negative sentiment are themselves the target of negativity. Users in mixed-attitude communities are less likely to hold a strongly polarised view, but more likely to express negative sentiment towards other users with differing views. Overall, social media discussions of climate change often occur within polarising “echo chambers”, but also within “open forums”, mixed-attitude communities that reduce polarisation and stimulate debate. Our results have implications for public engagement with this important global challenge.  相似文献   
30.
Using 2 high-speed cameras, we have recorded 14 negative cloud-to-ground (CG) lightning flashes, half of which are natural and the others are artificially triggered. The two-dimensional (2D) propagation speed of different type leaders and the luminosity of lightning channel are analyzed in detail. Bidirectional leader processes are observed during the initial processes of two altitude triggered negative lightning (ATNL)flashes. The analysis shows: the propagation speed of the upward positive leader (UPL) before the initiation of the downward negative leader (DNL) is at the order of 104-105 m s-1; the UPL can be intensified by the initiation and development of the DNL in the way that the luminosity is enhanced and the speed is sped up; after initiation, the DNL in one ATNL flash propagates downward three times intermittently with interval of about 1 ms, while that in the other ATNL flash propagates downward continuously with a speed at the order of 105 m s-1. In the five classical triggered negative lightning (CTNL) flashes, the propagation speeds of the UPLs vary between 0.35×105 and 7.71×105 m s-1, and the variations of their luminosities and speeds are quite complex during the development processes. Among the four observed natural negative lightning flashes occurred on the land, three have only one return stoke (RS) each and all of their DNLs have many branches with an average speed at the order of 105 m s-1; while the another one has 13 RSs.In the CG flash with 13 RSs, the DNL before the first RS has no obvious branch below 1.4 km above the ground, and its speed ranges from 2.2×105 to 2.3×105 m s-1 between the heights of 0.7 and 1.4 km and exceeds 3.9×106 m s-1 below 0.7 km; preceding the 4th RS, an attempted leader is observed with a speed ranging from 1.1×105 to 1.1×106 m s-1 between 0.8 and 1.5 km. As for the three observed natural negative lightning flashes occurred on the sea, each has only one RS, and each DNL preceding the RS has a few branches, two of which have an average propagation speed at the order of 105 m s-1, and the other of 106m s-1, respectively. All the DNLs contained in the observed natural negative lightning flashes, except the attempted leader, propagate with gradually increasing luminosity and increasing speed in whole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号