首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2785篇
  免费   287篇
  国内免费   201篇
测绘学   181篇
大气科学   271篇
地球物理   869篇
地质学   683篇
海洋学   257篇
天文学   565篇
综合类   71篇
自然地理   376篇
  2024年   4篇
  2023年   14篇
  2022年   49篇
  2021年   49篇
  2020年   76篇
  2019年   85篇
  2018年   67篇
  2017年   105篇
  2016年   87篇
  2015年   82篇
  2014年   121篇
  2013年   166篇
  2012年   121篇
  2011年   96篇
  2010年   113篇
  2009年   176篇
  2008年   162篇
  2007年   232篇
  2006年   212篇
  2005年   138篇
  2004年   160篇
  2003年   149篇
  2002年   125篇
  2001年   107篇
  2000年   91篇
  1999年   83篇
  1998年   81篇
  1997年   52篇
  1996年   56篇
  1995年   30篇
  1994年   37篇
  1993年   25篇
  1992年   16篇
  1991年   15篇
  1990年   12篇
  1989年   18篇
  1988年   8篇
  1987年   15篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   6篇
  1976年   2篇
排序方式: 共有3273条查询结果,搜索用时 31 毫秒
121.
Seeing the ocean through the eyes of seabirds could help meet the challenges of managing common-pool marine resources both in protected and unprotected areas. First, seabirds are top-predators, exposed to all threats affecting the oceans, and this makes them ideal sentinel organisms for monitoring changes within marine ecosystems. Second, seabirds cross both ecological and political boundaries, and following their movements should help making interdependencies within and between marine ecosystems more visible. Third, seabirds are conspicuous and often charismatic animals, which interact differently with different groups of stakeholders and provide the opportunity to acknowledge and discuss each other's values and interests. In this paper, we present these research avenues using a seabirds’ view, for tackling marine conservation and management issues, and we give operational examples of implementation based on our work in the English Channel.  相似文献   
122.
This study applies modern seismic geomorphology techniques to deep-water collapse features in the Orange Basin (Namibian margin, Southwest Africa) in order to provide unprecedented insights into the segmentation and degradation processes of gravity-driven linked systems. The seismic analysis was carried out using a high-quality, depth-migrated 3D volume that images the Upper Cretaceous post-rift succession of the basin, where two buried collapse features with strongly contrasting seismic expression are observed. The lower Megaslide Complex is a typical margin-scale, extensional-contractional gravity-driven linked system that deformed at least 2 km of post-rift section. The complex is laterally segmented into scoop-shaped megaslides up to 20 km wide that extend downdip for distances in excess of 30 km. The megaslides comprise extensional headwall fault systems with associated 3D rollover structures and thrust imbricates at their toes. Lateral segmentation occurs along sidewall fault systems which, in the proximal part of the megaslides, exhibit oblique extensional motion and define horst structures up to 6 km wide between individual megaslides. In the toe areas, reverse slip along these same sidewall faults, creates lateral ramps with hanging wall thrust-related folds up to 2 km wide. Headwall rollover anticlines, sidewall horsts and ramp anticlines may represent novel traps for hydrocarbon exploration on the Namibian margin.The Megaslide Complex is unconformably overlain by few hundreds of metres of highly contorted strata which define an upper Slump Complex. Combined seismic attributes and detailed seismic facies analysis allowed mapping of headscarps, thrust imbrications and longitudinal shear zones within the Slump Complex that indicate a dominantly downslope movement of a number of coalesced collapse systems. Spatial and stratal relationships between these shallow failures and the underlying megaslides suggest that the Slump Complex was likely triggered by the development of topography created by the activation of the main structural elements of the lower Megaslide Complex.This study reveals that gravity-driven linked systems undergo lateral segmentation during their evolution, and that their upper section can become unstable, favouring the initiation of a number of shallow failures that produce widespread degradation of the underlying megaslide structures. Gravity-driven linked systems along other margins are likely to share similar processes of segmentation and degradation, implying that the megaslide-related, hydrocarbon trapping structures discovered in the Namibian margin may be common elsewhere, making megaslides an attractive element of deep-water exploration along other gravitationally unstable margins.  相似文献   
123.
This paper evaluates the international agreements in place for the protection of the environment and the regulation of human activities taking place in world's oceans and seas. 500 multilateral agreements were reviewed against a framework of reference, grounded on the theoretical approaches of Adaptive Management and Transition Management. According to this framework, oceans complex systems management should: (1) consider the global oceans as a Social-Ecological System (SES); (2) aim to achieve or maintain their ecological resilience; and (3) implement iterative, learning-based management strategies, supported by science-based advice to policy and management. The results show that the present international legal framework for the global oceans does not require countries to adopt an adaptive, complex systems approach for global oceans ecological resilience. Instead, this study supports the perspective of a double fragmentation among international agreements. First, global agreements focus on issue-based objectives for determined human activities, ecological components or anthropogenic pressures. Second, regional agreements have a wider scope, but also a varying level of inclusion of ecological resilience considerations. There is the need to foster the inclusion of such an approach into existing and future international agreements and their implementation, including through soft-law, project-based initiatives at global and regional scales.  相似文献   
124.
Public service systems, such as emergency health care, police or fire brigades, are critical for day-to-day functioning of the society. To design and operate these systems efficiently much data needs to be collected and properly utilised. Here, we use the OpenStreetMap (OSM) data to model the demand points (DPs), which approximate the geographical location of customers, and the road network, which is used to access or distribute services. We consider all inhabitants as customers, and therefore to estimate the demand, we use the available population grids. People are changing their location in the course of the day and thus the demand for services is changing accordingly. In this paper, we investigate how the used demand estimate affects the optimal design of a public service system. We calculate and compare efficient designs corresponding to two demand models, a night-time demand model when the majority of inhabitants rest at home and the demand model derived from the 24-hour average of the population density. We propose a simple measure to quantify the differences between population grids and we estimate how the size of differences affects the optimal structure of a public service system. Our analyses reveal that the efficiency of the service system is not only dependent on the placement strategy, but an inappropriate demand model has significant effects when designing a system as well as when evaluating its efficiency.  相似文献   
125.
The geological structure and conditions of formation of a Lower Cretaceous clinoform complex in West Siberia are examined based on sequence stratigraphy. The regional Berriasian-Hauterivian clinoforms are interpreted as third-order sequences, and their formation should be considered in terms of the Depositional Sequence III model. Productive beds of both shallow and deep marine as well as continental genesis formed mostly in a regressive basin and belong to the highstand systems tracts.  相似文献   
126.
《Sedimentology》2018,65(4):1378-1389
Models relating sediment supply to catchment properties are important in order to use the geological record to deduce landscape evolution and interplay between tectonics and climate. Water discharge (Q w) is an important factor in the widely used ‘BQART ’ model, which relates sediment load to a set of measurable catchment parameters. Although many of the factors in this equation may be independently estimated with some degree of certainty in ancient systems, water discharge (Q w) certainly cannot. An analysis of a world database of modern catchments with 1255 entries shows that the commonly applied equation relating catchment area (A ) to water discharge (Q w = 0·075A0·8) does not predict water discharge from catchment area well in many cases (R 2 = 0·5 and an error spanning about three orders of magnitude). This is because the method does not incorporate the effect of arid and wet climate on river water discharge. The inclusion of climate data into such estimations is an opportunity to refine these estimates, because generalized estimates of palaeoclimate can often be deduced on the basis of sedimentological data such as palaeosol types, mineralogy and palaeohydraulics. This paper investigates how the relationship between catchment area and river discharge varies with four runoff categories (arid, semi‐arid, humid and wet), which are recognizable in the geological record, and modifies the coefficient and exponent of the above‐mentioned equation according to these classes. This modified model yields improved results in relating discharge to catchment area (R 2 = 0·95 and error spanning one order of magnitude) when core, outcrop or regional palaeoclimate reconstruction data are available in non‐arid systems. Arid systems have an inherently variable water discharge, and catchment area is less important as a control due to downstream losses. The model here is sufficient for many geological applications and makes it possible to include variations in catchment humidity in mass‐flux estimates in ancient settings.  相似文献   
127.
University faculty partners from the Departments of Geography and Instruction and Teacher Education at a large, public university collaborated with K-12 teachers and the leadership of a rural school district in order to investigate the crosscutting content of science, mathematics, and geography through the integration of web-based GIS technologies. The project explored the critical connections among technology, pedagogy, and content with a particular emphasis on developing technology-enhanced, inquiry-based lessons in which the teachers and their students used GIS technologies to analyze, visualize, and present data in real-world contexts. The findings highlight the importance of well-structured professional development that builds community, integrates diverse content and pedagogical expertise, provides feedback and coaching, and is of sufficient duration to effect change.  相似文献   
128.
Cropland fallows are the next best-bet for intensification and extensification, leading to increased food production and adding to the nutritional basket. The agronomical suitability of these lands can decide the extent of usage of these lands. Myanmar’s agricultural land (over 13.8 Mha) has the potential to expand by another 50% into additional fallow areas. These areas may be used to grow short-duration pulses, which are economically important and nutritionally rich, and constitute the diets of millions of people as well as provide an important source of livestock feed throughout Asia. Intensifying rice fallows will not only improve the productivity of the land but also increase the income of the smallholder farmers. The enhanced cultivation of pulses will help improve nutritional security in Myanmar and also help conserve natural resources and reduce environmental degradation. The objectives of this study was to use remote sensing methods to identify croplands in Myanmar and cropland fallow areas in two important agro-ecological regions, delta and coastal region and the dry zone. The study used moderate-resolution imaging spectroradiometer (MODIS) 250-m, 16-day normalized difference vegetation index (NDVI) maximum value composite (MVC), and land surface water index (LSWI) for one 1 year (1 June 2012–31 May 2013) along with seasonal field-plot level information and spectral matching techniques to derive croplands versus cropland fallows for each of the three seasons: the monsoon period between June and October; winter period between November and February; and summer period between March and May. The study showed that Myanmar had total net cropland area (TNCA) of 13.8 Mha. Cropland fallows during the monsoon season account for a meagre 2.4% of TNCA. However, in the winter season, 56.5% of TNCA (or 7.8 Mha) were classified as cropland fallows and during the summer season, 82.7% of TNCA (11.4 Mha) were cropland fallows. The producer’s accuracy of the cropland fallow class varied between 92 and 98% (errors of omission of 2 to 8%) and user’s accuracy varied between 82 and 92% (errors of commission of 8 to 18%) for winter and summer, respectively. Overall, the study estimated 19.2 Mha cropland fallows from the two major seasons (winter and summer). Out of this, 10.08 Mha has sufficient moisture (either from rainfall or stored soil water content) to grow short-season pulse crops. This potential with an estimated income of US$ 300 per hectare, if exploited sustainably, is estimated to bring an additional net income of about US$ 1.5 billion to Myanmar per year if at least half (5.04 Mha) of the total cropland fallows (10.08 Mha) is covered with short season pulses.  相似文献   
129.
利用逐小时风云卫星TBB资料、逐小时中国自动站与CMORPH降水产品融合数据以及国家级地面观测站24小时累积降水量,统计分析2010~2016年夏季,伴随下游地区(104°E以东)降水的青藏高原云团东传过程以及东传过程中镶嵌于云团中的中尺度对流系统(Mesoscale Convective System,简称MCS)特征。结果表明,共出现120次伴随下游降水的高原云团东传过程,6月出现最频繁,但持续时间较长的过程多出现在7月。云团向东传播的主要三条路径是平直东传、沿长江折向东传和复合东传。其中路径二——沿长江折向东传中的过程是高影响过程,因为过程次数较多(46次),过程平均持续时间较长(62小时),在下游地区引发的降水日数和暴雨日数最多。属于东传过程的MCS在7月形成最多,集中分布在青藏高原东坡、云贵高原东部、长江沿岸及其以南地区。高原MCS影响长江中下游地区降水主要是通过向东传播的形式实现,因为即使生命史更长的中α尺度对流系统(Meso-α Convective System,简称MαCS)也鲜少直接移动至110°E以东地区。不同区域的中α尺度持续性拉长形对流系统(Permanent Elongated Convective System,简称PECS)的日变化特征显示,东传过程MCS更容易在夜间从高原东坡向东传播至下游地区。在三条路径中,路径二中的东传过程MCS数量最多、在下游地区发展最旺盛并与降水日数和覆盖范围存在更好的对应关系。  相似文献   
130.
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the A-train constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10?16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号