首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   74篇
测绘学   1篇
大气科学   1篇
地球物理   447篇
地质学   7篇
海洋学   31篇
综合类   3篇
自然地理   1篇
  2023年   3篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   17篇
  2018年   18篇
  2017年   8篇
  2016年   12篇
  2015年   8篇
  2014年   24篇
  2013年   13篇
  2012年   21篇
  2011年   16篇
  2010年   13篇
  2009年   20篇
  2008年   20篇
  2007年   34篇
  2006年   32篇
  2005年   26篇
  2004年   23篇
  2003年   35篇
  2002年   31篇
  2001年   16篇
  2000年   23篇
  1999年   18篇
  1998年   14篇
  1997年   5篇
  1996年   6篇
  1994年   1篇
  1988年   1篇
排序方式: 共有491条查询结果,搜索用时 15 毫秒
481.
This study investigates whether a balanced impact damper (BID) with a vertically suspended impact body colliding with shock absorbing rubber can suppress vibrations of a floor slab subjected to walking and vertical seismic excitations. The impact body is suspended by coil springs to sustain its deadweight and centralize it within the gap, and collides with the stopper when its amplitude exceeds the specified gap width. The stopper is covered by a shock‐absorbing rubber made of polyurethane gel. The installed BID was evaluated in a single degree‐of‐freedom model of a floor slab subjected to vertical excitations. Simulations revealed that the installed BID properly controls the vibrations. Next, the effects of the BID installed on a steel plate were investigated in shaking table tests. The BID effectively suppressed vertical vibrations of the plate subjected to sinusoidal waves, seismic motions, and walking excitations. In addition, the shaking table tests were accurately simulated by the developed mathematical model of the damper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
482.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
483.
This paper describes a seismic test program performed on 12 steel‐encased buckling‐restrained braces (BRBs). The use of rolled or built‐up buckling‐restraining mechanisms with welded or bolted attachments was examined. In addition, the effects of bolt pretension, core‐to‐encasing attachment details, aspect ratio of core segment and imperfections due to manufacturing on the brace response were investigated. All specimens were subjected to a stepwise incremental quasi‐static testing protocol with a maximum axial strain amplitude of 2%. All specimens except one showed satisfactory performance with stable hysteretic response and sustained cumulative inelastic deformations in excess of 200 times the yield deformation. Based on the experimental results, the compression strength adjustment factor, and the strain hardening adjustment factor for each excursion were quantified. Test results revealed that these two factors are significantly influenced by the parameters investigated in the experimental program. BRB details were also found to influence the buckling and the yielding patterns of the core segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
484.
Although the design and applications of linear tuned mass damper (TMD) systems are well developed, nonlinear TMD systems are still in the developing stage. Energy dissipation via friction mechanisms is an effective means for mitigating the vibration of seismic structures. A friction‐type TMD, i.e. a nonlinear TMD, has the advantages of energy dissipation via a friction mechanism without requiring additional damping devices. However, a passive‐friction TMD (PF‐TMD) has such disadvantages as a fixed and pre‐determined slip load and may lose its tuning and energy dissipation abilities when it is in the stick state. A novel semi‐active‐friction TMD (SAF‐TMD) is used to overcome these disadvantages. The proposed SAF‐TMD has the following features. (1) The frictional force of the SAF‐TMD can be regulated in accordance with system responses. (2) The frictional force can be amplified via a braking mechanism. (3) A large TMD stroke can be utilized to enhance control performance. A non‐sticking friction control law, which can keep the SAF‐TMD activated throughout an earthquake with an arbitrary intensity, was applied. The performance of the PF‐TMD and SAF‐TMD systems in protecting seismic structures was investigated numerically. The results demonstrate that the SAF‐TMD performs better than the PF‐TMD and can prevent a residual stroke that may occur in a PF‐TMD system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
485.
The implementation of viscous dampers to microelectronics factories has been previously proved not to affect the micro‐vibration of the factories in operation so that the vibration‐sensitive manufacturing process will not be interfered. Therefore, a seismic retrofit strategy which employs the viscous dampers installed in between the exterior and interior structures of the ‘fab’ structure is proposed in the study. The design formulas corresponding to the proposed retrofit method are derived using the non‐proportional damping theory. Based on the study, it is found that the added damping ratio to the fab structure depends greatly on the frequency ratio of the two structures in addition to the damping coefficients of the added dampers. Outside the bandwidth of the frequency ratio in which the added damping ratio is very sensitive to the variation of the frequency ratio, the added damping ratio can be well captured using the classical damping theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
486.
陕西大茅坪铜矿床赋存于中元古代碧口群火山岩中,是陕西勉略宁三角区西部较典型的铜矿之一,对该矿床的研究有助于有效地指导在本区寻找同类型矿床。文中对原生晕分析数据,物探测量数据进行了不同方法的处理,在此基础上提出了综合找矿模型。其中对原生晕,通过不同方法建立了地球化学背景与异常的概率筛分模型,因子分析及元素组合模型、标准化丰度法及轴向分带模型;对物探数据进行线性加权组合建立了综合物探异常并运用该模型进行了初步预测。  相似文献   
487.
粘弹性阻尼器对建筑结构非线性地震反应的控制   总被引:11,自引:1,他引:11  
粘弹性阻尼器是抗震被动控制中一十分有效的耗能减震装置,本文4推导了粘弹性阻尼器和斜支撑的组合间单元刚度矩阵,并建立了在罕遇地震作用下,设置粘弹性阻尼器斜支撑的钢筋混凝土框架结构非线性地震反应时程分析的方法。  相似文献   
488.
提出一种组合型减震结构,由钢框架、节点阻尼器和原结构连接组成,外附钢框架将节点阻尼器连接在原混凝土框架结构上形成的增设节点阻尼器的外附钢框架结构,节点阻尼器的剪切滞回变形可以减小结构自身需要消耗的能量,从而提高原结构抗震性能。对原混凝土结构和增设节点阻尼器的组合型结构进行了的振动台试验。通过分析结构在不同地震波激励下的加速度和位移响应,得出楼层加速度和层位移的减震效果。研究结果表明:该结构体系在小震作用下通过提高结构刚度来增强其抗震性能;在大震作用下则可借助节点阻尼器的变形耗能来提升结构耗能能力,结构加速度减震系数达到53%,层间位移减震系数高达72%,验证了增设节点阻尼器的外附钢框架结构的减震效果。  相似文献   
489.
基于"强水平缝弱竖向缝"的设计理念,对采用软钢阻尼器直接连接腹板墙和翼缘墙的L形装配式剪力墙试件进行低周反复荷载试验。试验结果表明试件的整体工作性能良好,其位移延性系数均大于2.6,具有良好的变形性能;阻尼器平面内工作性能良好,能够实现屈服耗能。设计中应考虑阻尼器的屈服力对单片墙肢轴压比的影响,以满足规范对试件轴压比的要求,同时避免试件在两个加载方向的承载力产生较大差异。  相似文献   
490.
Viscoelastic (VE) dampers are sensitive to temperature, excitation frequency, and strain level. As they dissipate the kinetic energy from earthquake or wind-induced structural vibrations, their temperature increases from the heat generated, consequently softening their VE materials and lowering their dynamic mechanical properties. Temperature increase can be significant for long-duration loading, but can be limited by heat conduction and convection which depend on damper configuration. The writers analytically explored such effect on the six different dampers by using their previously proposed three-dimensional finite-element analysis method. Results provided better understanding of how heat is generated within the VE material, conducted and stored in different damper parts, and dispersed to the surrounding air. These results also led to characterization of both local (e.g., temperatures, properties, and strain energy density) and global (e.g., hysteresis loops, and stiffness) behavior of VE dampers, and provided a framework for a new simplified one-dimensional (1D) modeling approach for time-history analysis. This new proposed 1D method greatly improves the computation time of the previously proposed long-duration method coupling fractional time-derivatives VE constitutive rule with 1D heat transfer analysis. Unlike the previous method, it idealizes uniform shear strain and VE material property distributions for computational efficiency, but still simulating non-uniform temperature distribution along the thickness direction of the VE material. Despite the approximations, it accurately predicts VE damper global responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号