首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   74篇
测绘学   1篇
大气科学   1篇
地球物理   447篇
地质学   7篇
海洋学   31篇
综合类   3篇
自然地理   1篇
  2023年   3篇
  2022年   8篇
  2021年   11篇
  2020年   14篇
  2019年   17篇
  2018年   18篇
  2017年   8篇
  2016年   12篇
  2015年   8篇
  2014年   24篇
  2013年   13篇
  2012年   21篇
  2011年   16篇
  2010年   13篇
  2009年   20篇
  2008年   20篇
  2007年   34篇
  2006年   32篇
  2005年   26篇
  2004年   23篇
  2003年   35篇
  2002年   31篇
  2001年   16篇
  2000年   23篇
  1999年   18篇
  1998年   14篇
  1997年   5篇
  1996年   6篇
  1994年   1篇
  1988年   1篇
排序方式: 共有491条查询结果,搜索用时 140 毫秒
371.
This research investigates the development of a semi‐active piezoelectric friction damper for controlling the seismic response of large‐scale structures. The proposed device is made of Duplex steel and leads to high friction capacity, which can be developed either in passive or semi‐active modes. For the later, piezoelectric actuators react against a stiff clamping system and apply a variable normal force on the multiple contact surfaces. To validate the design, a prototype, which contact surfaces were made of stainless steel and brake pad material, was built and tested in both friction modes. Moreover, an analytical model of the damper was developed to estimate the performance of the piezoelectric actuators within the clamping system. Experimental results showed that the proposed device achieves a force range factor of 1.9. These experimental results also compare well with those obtained from the analytical model of the damper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
372.
Numerical studies of existing buildings demonstrate the effectiveness of nonlinear/inelastic rooftop tuned mass damper frames (NRTMDF) used as a retrofit for reducing seismic response. The technique utilizes a rooftop penthouse as a tuned mass damper with mass incorporated as the roof deck of the penthouse while targeted nonlinearity and energy dissipation are introduced through buckling restrained braces (BRBs) linking the penthouse mass to the structure below. The writers summarize numerical studies of ten existing buildings modified with a specifically tuned NRTMDF. The studies demonstrate the effectiveness of the technique that stems from elastic and transient inelastic period shifts enabled by the damper coupled with targeted energy dissipation in the penthouse BRBs. Numerical simulations using response nonlinear time‐history analysis techniques show that for many structures and sites, the NRTMDF decreases peak transient response and overall seismic demand of the original structure. The technique also reduces seismic demand on nonstructural elements and components, manifested as reductions in floor acceleration spectra. Energy methods show that the approach enables significant reductions in energy demand on the original structure through the complete earthquake acceleration history. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
373.
高速铁路大跨连续梁桥减隔震方案讨论   总被引:2,自引:0,他引:2  
针对某铁路大跨连续梁桥,基于3种减隔震装置,提出了4种减隔震设计方案,利用非线性时程分析法对每种方案进行了计算分析。结果表明,液体粘滞阻尼器可有效改善桥梁纵向的受力和位移;双曲面球型减隔震支座能同时改善桥梁纵、横向的受力,但位移较大;液体阻尼器与双曲面减隔震支座配合使用可同时改善结构的纵、横受力,并且可控制位移;铅芯阻尼器耗能效果显著,位移基本可控,应继续开展研究。  相似文献   
374.
The multifunctional vibration–absorption RC megaframe structures, which act as tuned mass dampers, base isolators and damping energy‐dissipaters, are presented. The proposed systems are essentially different from the normal megaframe structures in earthquake responses, failure mechanism, and theoretical model of seismic design. The elasto‐plastic dynamic analyses show that the earthquake responses of the multifunctional vibration–absorption RC megaframe structures decrease significantly in comparison with the normal megaframe structures, namely 60–80 per cent decrease of the earthquake responses of the major frames and 70–90 per cent decrease of the ones of the minor frames. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
375.
The authors developed a semi‐active hydraulic damper (SHD) and installed it in an actual building in 1998. This was the first application of a semi‐active structural control system that can control a building's response in a large earthquake by continuously changing the device's damping coefficient. A forced vibration test was carried out by an exciter with a maximum force of 100 kN to investigate the building's vibration characteristics and to determine the system's performance. As a result, the primary resonance frequency and the damping ratio of a building that the SHDs were not jointed to, decreased as the exciting force increased due to the influence of non‐linear members such as PC curtain walls. The equivalent damping ratio was estimated by approximating the resonance curves using the steady‐state response of the SDOF bilinear hysteretic system. After the eight SHDs were jointed to the building, the system's performance was identified by a response control test for steady‐state vibration. The elements that composed the semi‐active damper system demonstrated the specified performance and the whole system operated well. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
376.
To reduce floor acceleration of base‐isolated structures under earthquakes, a tuned mass damper (TMD) system installed on the roof is studied. The optimal tuning parameters of the TMD are analyzed for linear base isolation under a generalized ground motion, and the performance of the TMD is validated using a suite of recorded ground motions. The simulation shows that a TMD tuned to the second mode of a base‐isolated structure reduces roof acceleration more effectively than a TMD tuned to the first mode. The reduction ratio, defined as the maximum roof acceleration with the TMD relative to that without the TMD, is approximately 0.9 with the second‐mode TMD. The higher effectiveness of the second‐mode TMD relative to the first‐mode TMD is attributed primarily to the unique characteristics of base isolation, ie, the relatively long first‐mode period and high base damping. The modal acceleration of the second mode is close to or even higher than that of the first mode in base‐isolated structures. The larger TMD mass ratio and lower modal damping ratio of the second‐mode TMD compared to the first‐mode TMD increases its effect on modal acceleration reduction. The reduction ratio with the second‐mode TMD improves to 0.8 for bilinear base isolation. Because of the detuning effect caused by the change in the first‐mode period in bilinear isolation, the first‐mode TMD is ineffective in reducing roof acceleration. Additionally, the displacement experienced by the second‐mode TMD is considerably smaller than that of the first‐mode TMD, thereby reducing the installation space for the TMD.  相似文献   
377.
针对巨-子结构隔震体系,在隔震层处或子结构顶部与主结构连接处,施加SMA-压电智能复合阻尼器,从而形成巨-子结构智能隔震体系。本文通过限界Hrovat最优控制算法设计了巨-子结构智能隔震体系的半主动控制器,在此基础上,对巨-子结构智能隔震体系进行了Simulink控制效果仿真分析,同时比较了控制装置安装位置的不同对结构控制效果的影响,并与普通隔震结构的减震效果进行了对比。研究结果表明,智能隔震控制1(隔震层加控制装置)和智能隔震控制2(子结构顶部加控制装置)2种控制方案在控制结构的位移方面效果相差不大。总体而言,智能隔震控制2对于控制子结构单元顶部的绝对加速度效果更为显著,但是相对于普通隔震而言,特别是在控制隔震层位移方面2种方案都具有较好的控制效果。实施智能控制可以有效改善巨-子结构被动控制体系的抗震性能,并能降低隔震结构在遭受强震时由于隔震层出现过大位移导致结构倾覆的危险。  相似文献   
378.
为研究黏滞阻尼器对高层钢结构地震易损性的影响,基于Open SEES有限元分析平台,建立一个25层钢框架结构以及同尺寸附着黏滞阻尼器的钢框架结构,对两个钢框架结构以地震动峰值加速度(PGA)作为地震动强度指标,以结构最大层间位移角θmax为工程需求参数,从太平洋地震工程研究中心(PEER)中选取了15条地震动记录,分别对两个结构进行增量动力分析(Incremental Dynamic Analysis,IDA),建立结构的IDA曲线簇。结合地震易损性分析,对分析结果进行对数拟合,构筑两个结构的连续易损性曲线,并进一步提出用贝塔分布函数将结果转化为地震动参数-震害指数概率密度函数的概率表达方式,可以更加直观简便地观察到黏滞阻尼器显著的减震效果。该表达方法具有直观性,研究成果可为既有结构的地震灾害风险评估等提供简明且有力的分析方法。  相似文献   
379.
This paper presents an experimental investigation on the performance of multiple‐tuned liquid column dampers (MTLCD) for reducing torsional vibration of structures in comparison with single‐tuned liquid column dampers (STLCD). A large structure model simulating its torsional vibration and several STLCDs and MTLCDs of different configurations are designed and constructed. A series of harmonically forced vibration tests are conducted to evaluate the effectiveness of MTLCDs in reducing torsional vibration of the structure and to assess the performance effects of various design parameters, which include the number of TLCD units in a MTLCD, the bandwidth of a MTLCD, the frequency tuning ratio and the moment excitation amplitude. An averaging method is also used to identify the head loss coefficients of STLCDs and MTLCDs in conjunction with the free vibration test technique. The experimental results show that the performance of a MTLCD is better than a STLCD with the same water volume in reducing the torsional vibration of structure. The performance sensitivity to frequency tuning ratio can be improved by using MTLCDs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
380.
An efficient procedure is presented for dynamic response analysis of horizontal tube array in partially filled calandria including hydrodynamic interaction effects. The procedure is general enough to consider the transfer of energy between the fluid-coupled tubes, and effects of moderator sloshing on the magnitude and the distribution of hydrodynamic forces. It has been demonstrated that the conventional added mass approach fails to represent behaviour of the tube array correctly, and it is therefore necessary to consider the flexibility of all the tubes along two directions simultaneously. The procedure presented can simulate the added damping effects due to hydrodynamic interaction. The possible use of a tuned damper tube is suggested for controlling sloshing effects for tube array in a calandria where tube frequencies and sloshing frequencies are closely spaced. The presence of surface damping in the tuned tube further brings down the response, and the suggested procedure can be effectively used to control unwarranted sloshing effects. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号