首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2300篇
  免费   421篇
  国内免费   295篇
测绘学   101篇
大气科学   56篇
地球物理   648篇
地质学   1239篇
海洋学   126篇
天文学   11篇
综合类   101篇
自然地理   734篇
  2024年   20篇
  2023年   48篇
  2022年   93篇
  2021年   102篇
  2020年   99篇
  2019年   96篇
  2018年   75篇
  2017年   80篇
  2016年   107篇
  2015年   85篇
  2014年   111篇
  2013年   125篇
  2012年   114篇
  2011年   116篇
  2010年   113篇
  2009年   127篇
  2008年   157篇
  2007年   128篇
  2006年   110篇
  2005年   96篇
  2004年   125篇
  2003年   99篇
  2002年   89篇
  2001年   83篇
  2000年   101篇
  1999年   72篇
  1998年   71篇
  1997年   65篇
  1996年   44篇
  1995年   45篇
  1994年   46篇
  1993年   39篇
  1992年   44篇
  1991年   34篇
  1990年   22篇
  1989年   17篇
  1988年   10篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有3016条查询结果,搜索用时 13 毫秒
991.
Thermokarst lakes are a major heat source for the adjacent permafrost and a significant source of atmospheric methane. These lakes have important impacts on the physical, chemical, biological, geomorphological and hydrological processes occurring in the ground under and around thermokarst lakes, and seriously affect the local environment and the stability of the structures constructed in permafrost regions. Numerical simulation methods provide an effective method for quantitative analysis of the long-term impact of thermokarst lakes and their evolution on permafrost surrounding the lakes, and have deepened our knowledge about the impact of thermokarst lakes immensely. Summarizing the research progresses in numerical simulation of long-term impact of thermokarst lakes on thermal regime of surrounding permafrost has an important guiding function to improve mathematical models and develop more effective models. In this study, the components, functions, advantages and defects of several typical mathematical models having developed over the past ten years or so were reviewed, such as the heat conduction model with phase change, thaw slumping model, the coupled lake-permafrost model, thaw lake expansion model combining thermal processes with mass wasting and thaw-driven subsidence, the coupled heat conduction and moisture migration model, and the moving mesh method based thermokarst lake dynamic evolution model. Several issues deserving to be paid further attention in the future researches were proposed, including creating more effective models, determining the more realistic initial condition, lucubrating thermal and physical parameters of the typical soils, consider the impact of lake water replenishment, quantitative analysis of the thermal effect of supra-permafrost water flow around the thermokarst lakes, creating the coupled governing equation of heat conduction with phase change and convective heat transfer, embed ding the effect of climate warming in the model, numerical investigation of the long-term influence of thermokarst lake drainage on the environment change in permafrost regions, analyzing the long-term joint impact of multiple lakes on adjacent permafrost, simulating the near-shore talik development process and feature beneath shallow water in expanding thermokarst lakes, and continuing to do the systemic and comprehensive field measurements.  相似文献   
992.
《China Geology》2018,1(1):72-83
With the technological development of exploitation and separation, the primary sources of lithium have gradually changed from ore to brine, which has become the main raw material, accounting for more than 80% of the total production. Resources of lithium-bearing brine are abundant in China. This paper has summarized the spatial and temporal distribution, characteristics, and formation mechanism of the lithium-rich brine in China, aiming to provide a comprehensive set of guidelines for future lithium exploitation from brines. Lithium-rich brines usually exist in modern saline lakes and deep underground sedimentary rocks as subsurface brines. The metallogenic epoch of China’s lithium-rich brine spans from the Triassic to the Quaternary, and these brines exhibit obvious regional distribution characteristics. Modern lithium-rich saline lakes are predominately located in the Qinghai-Tibet Plateau. In comparison, the subsurface lithium-rich brines are mainly distributed in the sedimentary basins of Sichuan, Hubei, Jiangxi provinces and so on in south Block of China, and some are in the western part of the Qaidam Basin in Qinghai province in northwestern China. Lithium-rich saline lakes are belonging to chloride-enriched, sulfate-enriched, and carbonate-enriched, while the deep lithium-rich brines are mainly chloride-enriched in classification. On the whole, the value of Mg/Li in deep brine is generally lower than that of brine in saline lakes. The genesis of lithium-rich brines in China is not uniform, generally there are two processes, which are respectively suitable for salt lakes and deep brine.  相似文献   
993.
Remote sensing is useful for water quality assessments but current remote sensing applications favour parameters that are easy to detect such as chlorophyll-a. An assessment of the utility of Landsat 8 for detecting nutrients was conducted in Mazvikadei reservoir in Zimbabwe. The main objective was to determine whether nutrients often overlooked by remote sensing and yet are the main determinants of water quality can be remotely sensed. Sampling targeted ammonia, nitrates and reactive phosphorus from May to October 2015. In situ nutrient concentrations were regressed against reflectance derived from Landsat 8 imagery. Strong negative relationships were found between ammonia and the near-infrared band in July (R2 = 0.80, p < 0.05) as well as between nitrates and the blue band (R2 = 0.67, p < 0.05) in June. Overall, the results suggest that the cool dry season is the optimum time to use Landsat 8 for monitoring nutrients in tropical lakes.  相似文献   
994.
The study of mass movements in lake sediments provides insights into past natural hazards at historic and prehistoric timescales. Sediments from the deep basin of Lake Geneva reveal a succession of six large‐scale (volumes of 22 × 106 to 250 × 106 m3) mass‐transport deposits, associated with five mass‐movement events within 2600 years (4000 cal bp to 563 ad ). The mass‐transport deposits result from: (i) lateral slope failures (mass‐transport deposit B at 3895 ± 225 cal bp and mass‐transport deposits A and C at 3683 ± 128 cal bp ); and (ii) Rhône delta collapses (mass‐transport deposits D to G dated at 2650 ± 150 cal bp , 2185 ± 85 cal bp , 1920 ± 120 cal bp and 563 ad , respectively). Mass‐transport deposits A and C were most probably triggered by an earthquake, whereas the Rhône delta collapses were likely to be due to sediment overload with a rockfall as the external trigger (mass‐transport deposit G, the Tauredunum event in 563 ad known from historical records), an earthquake (mass‐transport deposit E) or unknown external triggers (mass‐transport deposits D and F). Independent of their origin and trigger mechanisms, numerical simulations show that all of these recorded mass‐transport deposits are large enough to have generated at least metre‐scale tsunamis during mass movement initiation. Since the Tauredunum event in 563 ad , two small‐scale (volumes of 1 to 2 × 106 m3) mass‐transport deposits (H and I) are present in the seismic record, both of which are associated with small lateral slope failures. Mass‐transport deposits H and I might be related to earthquakes in Lausanne/Geneva (possibly) 1322 ad and Aigle 1584 ad , respectively. The sedimentary record of the deep basin of Lake Geneva, in combination with the historical record, show that during the past 3695 years, at least six tsunamis were generated by mass movements, indicating that the tsunami hazard in the Lake Geneva region should not be neglected, although such events are not frequent with a recurrence time of 0·0016 yr?1.  相似文献   
995.
The evolution of flood activity with global warming remains uncertain. To better assess flood–climate relationships, lake sediments are increasingly being investigated because they could provide regional flood histories long enough to cover past climate changes. However, site‐specific sedimentary processes may bias flood reconstructions. The aim of this article is to investigate these effects through the reconstruction of two distinct flood records from independent, neighbouring sedimentary basins of the same lake (Lake Allos in the Mediterranean French Alps), i.e. under the same climate conditions. Understanding of sedimentary processes is crucial in order to adapt the sampling strategy and the flood‐intensity proxy to each sedimentary system and, thereby, reconstruct a complete and reliable flood history. Thanks to this detailed approach, the main trends of the regional flood variability can be reproduced; i.e. periods of high flood‐frequency, ranges of flood‐frequency values and timing of the most intense events. In detail, some differences appeared associated to the various stream capacities to erode and transport flood sediments to the lake system, implying variable sensitivity of sedimentary systems in recording floods. Comparing regional flood records based on independent sedimentary systems from similar environments could thus be a complementary approach to assessing past flood intensity. Such an approach could open particularly interesting perspectives because reconstructing the long‐term evolution of flood intensity is a key challenge in the geosciences.  相似文献   
996.
Rock avalanches destroy and reshape landscapes in only a few minutes and are among the most hazardous processes on Earth. The surface morphology of rock avalanche deposits and the interaction with the underlying material are crucial for runout properties and reach. Water within the travel path is displaced, producing large impact waves and reducing friction, leading to long runouts. We hypothesize that the 0.2 km3 Holocene Eibsee rock avalanche from Mount Zugspitze in the Bavarian Alps overran and destroyed Paleolake Eibsee and left a unique sedimentological legacy of processes active during the landslide. We captured 9.5 km of electrical resistivity tomography (ERT) profiles across the rock avalanche deposits, with up to 120 m penetration depth and more than 34 000 datum points. The ERT profiles reveal up to ~50 m thick landslide debris, locally covering up to ~30 m of rock debris with entrained fine-grained sediments on top of isolated remnants of decametre-wide paleolake sediments. The ERT profiles allow us to infer processes involved in the interaction of the rock avalanche with bedrock, lake sediments, and morainal sediments, including shearing, bulging, and bulldozing. Complementary data from drilling, a gravel pit exposure, laboratory tests, and geomorphic features were used for ERT calibration. Sediments overrun by the rock avalanche show water-escape structures. Based on all of these datasets, we reconstructed both position and size of the paleolake prior to the catastrophic event. Our reconstruction of the event contributes to process an understanding of the rock avalanche and future modelling and hazard assessment. Here we show how integrated geomorphic, geophysical, and sedimentological approaches can provide detailed insights into the impact of a rock avalanche on a lake. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
997.
Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880–1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.  相似文献   
998.
The Lake Afourgagh sediment record and facies successions provide an outstanding example of environmentally controlled carbonate sedimentation. Afourgagh is a small, shallow permanent lake located in the Middle‐Atlas Mountains in Morocco in a karstic context. It is fed by ground waters that are relatively enriched in Mg resulting from the leaching of the Jurassic dolomitic bedrock of the catchment. This eutrophic lake is episodically restricted and characterized by alkaline waters with a fluctuating high Mg/Ca ratio. The maximum extension of the Holocene shoreline coincides with evidence of a lake stabilization level corresponding to the outflow of the lake through a wadi. Lakeshore terrace sediments deposited on an alluvial fan siltstone during the past ca 2500 cal yr bp comprise four main facies: a littoral crust, palaeosols, palustrine silts and charophyte tufas, which reflect different environments from the shoreline toward the deeper water. In the more distal parts, the charophyte tufas display a well‐expressed lamination punctuated by the development of microstromatolites on algae thalli. The mineralogical composition of the carbonates is linked to the facies. While the charophyte tufas are characterized by a relatively high content in aragonite, in addition to low‐Mg calcite, the littoral crust is mainly composed of magnesite. This pattern is related to the evolving chemistry of water due to the influence of charophyte proliferation during dry summers. Calcium‐carbonate precipitation on algae thalli (both bioinduced and microbially mediated) progressively induces an increase in the Mg/Ca ratio of the lake water, while the capillary evaporation of shallow ground waters causes precipitation of a magnesite precursor on the shoreline, producing magnesite during early diagenesis. This effect is characteristic of two episodes: part of the Roman Warm Period and the beginning of the Dark Age Cold Period. The carbonate mineralogy of the different depositional sequences at Afourgagh indicates lake‐level and water‐chemistry fluctuations under a climatic influence. Therefore, among other regional records, the Lake Afourgagh sedimentary record provides useful evidence for reconstructing these environmental changes.  相似文献   
999.
Abstract

Agricultural land use in the area of water bodies is generally considered to increase the nutrient status of the water body water and sediments, but is this also the case for already nutrient-rich fish ponds? We studied 83 fish ponds in the Dombes region, France, where 1100 ponds are located in a heterogeneous agricultural landscape. Different water and sediment parameters were analysed for ponds and in ditches after rainfall events. Land use was studied in the primary catchment of ponds and in a 100-m zone around ponds. Soil parameters of different land-use types were analysed and farmers interviewed about agricultural practices. Increasing cropping area in the catchment of the ponds is significantly correlated to higher PO4 3- concentration of pond water and to a lower degree, also to NO3 ?, but only in certain years with higher rainfall and with a more uneven distribution in spring. Sediment parameters were not significantly influenced. High NO3- concentration in the water of a ditch during significant rainfall events was found for a cropland dominated catchment.

Citation Wezel, A., Arthaud, F., Dufloux, C., Renoud, F., Vallod, D., Robin, J., and Sarrazin, B., 2013. Varied impact of land use on water and sediment parameters in fish ponds of the Dombes agro-ecosystem, France. Hydrological Sciences Journal, 58 (4), 854–871.  相似文献   
1000.
On June 17, 2020, a mudslide occurred in Meilongou of Banshanmen Town, Danba County of Sichuan Province, which blocked Xiaojinchuan River and formed a barrier lake, causing heavy property losses and casualties. In order to grasp the first-hand disaster situation and assist emergency rescue and other disposals, combined with the UAV aerial photography data and post-disaster site survey and other data, the authors used the domestic high-score 2 satellite data as the main data source to carry out the emergency investigation and analytical research of emergency rescue decision about “6.17” Danba River debris flow disaster chain. The results show that the affected population is about 65,000 and the nearest emergency rescue teams are from State Grid Danba County Power Supply Company and China Unicom of Xiaojin Country. Five schools, such as Banshanmen middle school, could be used as temporary resettlement shelters. There are six mining enterprises, one important reservoir and one hydropower station affected by the disaster. The debris flow gully is NE—SE distributed, covering about 142,700 m2. And the barrier lake is about 1.03 km2, covering 498,000 m2. The totally destroyed roadbed and road surface were about 2.1 km and there are 9 suspected disaster hidden dangers in the lower reach. Whats more, 25 residential houses and 5 bridges were damaged by the disaster. Two rescue lifelines with good post-disaster accessibility to the severely affected debris flow areas were chosen. With the help of remote sensing technology, the in-depth analysis of the pre-judgment of the affected population by the debris flow disaster chain, emergency investigation of the disaster situation and disaster damage, and the selection of emergency rescue lifelines were successfully conducted, which has great guiding significance in the emergency rescue and disaster prevention and mitigation in the mountainous areas of Southwest China with similar geological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号