首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   369篇
  国内免费   534篇
测绘学   53篇
大气科学   217篇
地球物理   1153篇
地质学   897篇
海洋学   191篇
天文学   7篇
综合类   54篇
自然地理   132篇
  2024年   5篇
  2023年   37篇
  2022年   67篇
  2021年   63篇
  2020年   86篇
  2019年   109篇
  2018年   110篇
  2017年   79篇
  2016年   115篇
  2015年   99篇
  2014年   135篇
  2013年   158篇
  2012年   107篇
  2011年   118篇
  2010年   108篇
  2009年   143篇
  2008年   127篇
  2007年   143篇
  2006年   121篇
  2005年   107篇
  2004年   88篇
  2003年   113篇
  2002年   74篇
  2001年   55篇
  2000年   57篇
  1999年   47篇
  1998年   43篇
  1997年   41篇
  1996年   40篇
  1995年   29篇
  1994年   24篇
  1993年   14篇
  1992年   12篇
  1991年   12篇
  1990年   6篇
  1989年   6篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有2704条查询结果,搜索用时 359 毫秒
61.
We propose a numerical method that couples a cohesive zone model (CZM) and a finite element‐based continuum damage mechanics (CDM) model. The CZM represents a mode II macro‐fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not account for micro‐crack interaction, is calibrated against triaxial compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a comparison with Kachanov's micro‐mechanical model, we confirm that the critical micro‐crack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to match to the post‐peak stress/strain curves obtained during experimental tests performed on Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then use the calibrated shale rheology to simulate the propagation of a meter‐scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip‐friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage. The computational method is applicable to a range of geological injection problems including hydraulic fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode (I+II+III) propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
62.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
63.
This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear‐induced anisotropy. The resulting approach is fully three‐dimensional and is not restricted to plane‐displacement kinematics. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters but shows good agreement with laboratory tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
64.
The separated and combined effects of land‐cover scenarios and future climate on the provision of hydrological services were evaluated in Vez watershed, northern Portugal. Soil and Water Assessment Tool was calibrated against daily discharge, sediments and nitrates, with good agreements between model predictions and field observations. Four hypothetical land‐cover scenarios were applied under current climate conditions (eucalyptus/pine, oak, agriculture/vine and low vegetation). A statistical downscaling of four General Circulation Models, bias‐corrected with ground observations, was carried out for 2021–2040 and 2041–2060, using representative concentration pathway 4.5 scenario. Also, the combined effects of future climate conditions were evaluated under eucalyptus/pine and agriculture/vine scenario. Results for land cover revealed that eucalyptus/pine scenario reduced by 7% the annual water quantity and up to 17% in the summer period. Although climate change has only a modest effect on the reduction of the total annual discharge (?7%), the effect on the water levels during summer was more pronounced, between ?15% and ?38%. This study shows that climate change can affect the provision of hydrological services by reducing dry season flows and by increasing flood risks during the wet months. Regarding the combined effects, future climate may reduce the low flows, which can be aggravated with eucalyptus/pine scenario. In turn, peak flows and soil erosion can be offset. Future climate may increase soil erosion and nitrate concentration, which can be aggravated with agriculture scenario. Results moreover emphasize the need to consider both climate and land‐cover impacts in adaptation and land management options at the watershed scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
65.
For civil engineering structures with a tightness role, structural permeability is a key issue. In this context, this paper presents a new proposition of a numerical modelling of leakage rate through a cracked concrete structure undergoing mode I cracking. The mechanical state of the material, considered in the framework of continuum mechanics based on finite element modelling, is described by means of the stress‐based nonlocal damage model which takes into account the stress state and provides realistic local mechanical fields. A semi‐discrete method based on the strong discontinuity approach to estimate crack opening is then considered in the post‐treatment phase. Using a Poiseuille's like relation, the coupling between the mechanical state of the material and its dry gas conductivity is performed. For validation purposes, an original experimental campaign is conducted on a dry concrete disc loaded in a splitting setup. During the loading, gas conductivity and digital image correlation analysis are performed. The comparison with the 3D experimental mechanical global response highlights the performance of the mechanical model. The comparison between crack openings measured by digital image correlation and estimated by the strong discontinuity method shows a good agreement. Finally, the results of the semi‐discrete approach coupled with the gas conductivity compared with experimental data show a good estimation of the structural conductivity. Consequently, if the mechanical problem is well modelled at the global scale, then the proposed approach provides good estimation of gas conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
66.
The present paper focuses on selected plasticity and damage‐plasticity models for describing the 3D material behavior of concrete. In particular, a plasticity model and a damage‐plasticity model are reviewed and evaluated. Based on the results of the evaluation, enhancements are proposed, aiming at improving the correspondence between predicted and observed material behavior and aiming at implementing a robust and efficient stress update algorithm in a finite element program for performing large‐scale 3D numerical simulations of concrete structures. The capabilities of the concrete models are demonstrated by 3D numerical simulations of benchmark tests with combined bending and torsional loading and combined compression and shear loading and by a large‐scale 3D finite element analysis of a model test of a concrete arch dam. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
67.
区域生态风险评价是对各种生态风险及环境问题进行评价和管理的重要手段。针对雅安地震灾区特殊的自然地理及生态环境特征,选取芦山县为研究对象,采用遥感、GIS及SPSS统计分析的方法,通过风险源、风险受体、暴露和易损性分析,建立生态风险综合评价模型,划分生态风险区类型,进而提出生态风险管理对策。结果表明:1)微度和低度生态风险区集中分布在高海拔的森林及草地生态系统,该区生物多样性丰富,抗干扰能力较强,地质灾害及人类活动影响较小;2)中度和高度生态风险区具有沿农田及建设用地生态系统集聚分布的特征,该区地质灾害频繁,地壳活动性较强,生态系统抵抗灾害的能力较差。研究结果可为地震灾区防御、规避风险及安全选址提供科学依据。  相似文献   
68.
This paper aims at developing a method for modeling rock mass with preexisting multiple discontinuities within the framework of the smoothed finite element method (SFEM). The discontinuity is simulated by an interface element with zero thickness, the stiffness matrix of which are derived explicitly based on the SFEM. An elastic damage constitutive relation with residual strength is introduced in order to describe the nonlinear mechanical behavior of the discontinuities. The computation codes of the present method were developed. The present method has been verified to be a sound approach for modeling discontinuous rock mass, inheriting the advantages of the SFEM.  相似文献   
69.
India's growing role in the global climate debate makes it imperative to analyse emission reduction policies and strategies across a range of GHGs, especially for under-researched non-CO2 gases. Hydrofluorocarbons' (HFCs) usage in cooling equipment and subsequent emissions are expected to increase dramatically in India with the phase-out of hydrochlorofluorocarbons (HCFCs) as coolants in air-conditioning equipment. We focus on the residential air-conditioning sector in India and analyse a suite of HFC and alternative coolant gas scenarios for understanding the implications for GHG emissions from this sector within an integrated assessment modelling framework. We find that, if unabated, HFC410A emissions will contribute to 36% of the total global warming impact from the residential air-conditioner sector in India in 2050, irrespective of the future economic growth trajectory, and the remaining 64% is from energy to power residential air-conditioners. A move towards more efficient, low global warming potential (GWP) alternative refrigerants will significantly reduce the cumulative global warming footprint of this sector by 37% during the period 2010–2050, due to gains both from energy efficiency as well as low GWP alternatives. Best practices for reducing direct emissions are important, but only of limited utility, and if a sustainable lifestyle is adopted by consumers with lower floorspace, low GWP refrigerants, and higher building envelope efficiencies, cumulative emissions during 2010–2050 can be reduced by 46% compared to the Reference scenario.

Policy relevance

Our analysis has important implications for Indian climate policy. We highlight that the Indian government's amendment proposal to the Montreal Protocol is a strong signal to the Indian market that the transition away from high GWP refrigerants towards low/zero GWP alternatives will happen sooner or later. The Bureau of Energy Efficiency should extend building energy conservation code policy to residential buildings immediately, and the government should mandate it. Government authorities should set guidelines and mandate reporting of data related to air-conditioner coolant recharge frequency and recovery of scrapped air-conditioner units. For contentious issues like flammability where there is no consensus within the industry, the government needs to undertake an independent technical assessment that can provide unbiased and reliable information to the market.  相似文献   

70.
This article illustrates the main difficulties encountered in the preparation of GHG emission projections and climate change mitigation policies and measures (P&M) for Kazakhstan. Difficulties in representing the system with an economic model have been overcome by representing the energy system with a technical-economic growth model (MARKAL-TIMES) based on the stock of existing plants, transformation processes, and end-use devices. GHG emission scenarios depend mainly on the pace of transition in Kazakhstan from a planned economy to a market economy. Three scenarios are portrayed: an incomplete transition, a fast and successful one, and even more advanced participation in global climate change mitigation, including participation in some emission trading schemes. If the transition to a market economy is completed by 2020, P&M already adopted may reduce emissions of CO2 from combustion by about 85 MtCO2 by 2030 – 17% of the emissions in the baseline (WOM) scenario. One-third of these reductions are likely to be obtained from the demand sectors, and two-thirds from the supply sectors. If every tonne of CO2 not emitted is valued up to US$10 in 2020 and $20 in 2030, additional P&M may further reduce emissions by 110 MtCO2 by 2030.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号