首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1006篇
  免费   544篇
  国内免费   170篇
测绘学   35篇
大气科学   18篇
地球物理   385篇
地质学   1074篇
海洋学   54篇
天文学   19篇
综合类   39篇
自然地理   96篇
  2024年   8篇
  2023年   12篇
  2022年   45篇
  2021年   75篇
  2020年   68篇
  2019年   63篇
  2018年   62篇
  2017年   81篇
  2016年   98篇
  2015年   64篇
  2014年   81篇
  2013年   162篇
  2012年   87篇
  2011年   69篇
  2010年   62篇
  2009年   82篇
  2008年   60篇
  2007年   44篇
  2006年   48篇
  2005年   56篇
  2004年   48篇
  2003年   22篇
  2002年   34篇
  2001年   38篇
  2000年   55篇
  1999年   38篇
  1998年   33篇
  1997年   28篇
  1996年   21篇
  1995年   17篇
  1994年   13篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1977年   1篇
排序方式: 共有1720条查询结果,搜索用时 15 毫秒
161.
Thalweg migration of an alluvial river plays a key role in channel evolution, which may influence the effect of existing river training works and biodiversity on floodplains, and cause losses in riparian land and property. The braided reach of the Lower Yellow River underwent continuous channel aggradation during the period from 1986 to 1999, and then remarkable channel degradation in 1999–2015 owing to the state of operation of the Xiaolangdi Reservoir in 1999. Here we quantify associated thalweg migration changes and identify the key influencing factor in the braided reach. Thalweg‐migration distances and intensities at section‐ and reach‐scales were calculated during the past 30 years from 1986 to 2015, in order to investigate the characteristics of thalweg migration in the reach. There was a 47% reduction in the reach‐scale thalweg‐migration distance and a 35% reduction in the corresponding migration intensity after the reservoir operation. It is also revealed that fluvial erosion intensity is a dominant factor in controlling the thalweg migration, based on the investigation into various influencing factors in the study reach. The thalweg‐migration intensity of the braided reach can be expressed as a power function of the previous four‐year average fluvial erosion intensity. The calculated thalweg‐migration intensities in 1986–2015 using the proposed relation generally agree with the observed data. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
162.
Basin‐scale predictive geomorphic models for river characteristics, particularly grain size, can aid in salmonid habitat identification. However, these basin‐scale methods are largely untested with actual habitat usage data. Here, we develop and test an approach for predicting grain size distributions from high resolution LiDAR (Light Detection and Ranging)‐derived topographic data for a 77 km2 watershed along the central California Coast. This approach improves on previous efforts in that it predicts the full grain size distribution and incorporates an empirically calibrated shear stress partitioning factor. The predicted grain size distributions are used to calculate the fraction of the bed area movable by spawning fish. We then compare the ‘movable fraction’ with 7 years of observed spawning data. We find that predicted movable fraction explains the paucity of spawning in the upper reaches of the study drainage, but does not explain variation along the mainstem. In search of another morphologic characteristic that may help explain the variation within the mainstem, we measure riffle density, a proxy for physical habitat complexity. We find that field surveys of riffle density explain 64% of the variation in spawning in these mainstem reaches, suggesting that within reaches of appropriate sized gravel, spawning density is related to riffle density. Because riffle density varies systematically with channel width, predicting riffle spacing is straightforward with LiDAR data. Taken together, these findings demonstrate the efficacy of basin‐scale spawning habitat predictions made using high‐resolution digital elevation models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
163.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
164.
Single bed load particle impacts were experimentally investigated in supercritical open channel flow over a fixed planar bed of low relative roughness height simulating high‐gradient non‐alluvial mountain streams as well as hydraulic structures. Particle impact characteristics (impact velocity, impact angle, Stokes number, restitution and dynamic friction coefficients) were determined for a wide range of hydraulic parameters and particle properties. Particle impact velocity scaled with the particle velocity, and the vertical particle impact velocity increased with excess transport stage. Particle impact and rebound angles were low and decreased with transport stage. Analysis of the particle impacts with the bed revealed almost no viscous damping effects with high normal restitution coefficients exceeding unity. The normal and resultant Stokes numbers were high and above critical thresholds for viscous damping. These results are attributed to the coherent turbulent structures near the wall region, i.e. bursting motion with ejection and sweep events responsible for turbulence generation and particle transport. The tangential restitution coefficients were slightly below unity and the dynamic friction coefficients were lower than for alluvial bed data, revealing that only a small amount of horizontal energy was transferred to the bed. The abrasion prediction model formed by Sklar and Dietrich in 2004 was revised based on the new equations on vertical impact velocity and hop length covering various bed configurations. The abrasion coefficient kv was found to be vary around kv ~ 105 for hard materials (tensile strength ft > 1 MPa), one order of magnitude lower than the value assumed so far for Sklar and Dietrich's model. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
165.
Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model the erosion and consequent retreat of streambanks. However, modeling streambank retreat has many important applications, including the design and assessment of mitigation strategies for stream revitalization and stabilization. In order to highlight the current complexities of modeling streambank retreat and to suggest future research areas, this paper reviewed one of the most comprehensive streambank retreat models available, the Bank Stability and Toe Erosion Model (BSTEM), which has recently been integrated with several popular hydrodynamic and sediment transport models including the Hydrologic Engineering Center's River Analysis System (HEC‐RAS). The objectives of this paper were to: (i) comprehensively review studies that have utilized BSTEM and report their findings, (ii) address the limitations of the model so that it can be applied appropriately in its current form, and (iii) suggest directions of research that will help make the model a more useful tool in future applications. The paper includes an extensive overview of peer reviewed studies to guide future users of BSTEM. The review demonstrated that the model needs further testing and evaluation outside of the central United States. Also, further development is needed in terms of accounting for spatial and temporal variability in geotechnical and fluvial erodibility parameters, incorporating subaerial processes, and accounting for the influence of riparian vegetation on streambank pore‐water pressure dynamics, applied shear stress, and erodibility parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
166.
Geomorphology has increasingly considered the role of biotic factors as controls upon geomorphic processes across a wide range of spatial and temporal scales. Where timescales are long (centennial and longer), it has been possible to quantify relationships between geomorphic processes and vegetation using, for example, the pollen record. However, where the biotic agents are fauna, longer term reconstruction of the impacts of biological activity upon geomorphic processes is more challenging. Here, we review the prospect of using environmental DNA as a molecular proxy to decipher the presence and nature of faunal influences on geomorphic processes in both present and ancient deposits. When used appropriately, this method has the potential to improve our understanding of biotic drivers of geomorphic processes, notably fauna, over long timescales and so to reconstruct how such drivers might explain the landscape as we see it today. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
167.
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In Pasternack et al. ( 2018 ), a new, scale‐independent, hierarchical river classification was developed that uses five landform types to map the domains of a single fluvial process – flow convergence routing – at each of three–five spatial scales. Given those methods, this study investigated the details of how flow convergence routing organizes nested landform sequences. The method involved analyzing landform abundance, sequencing, and hierarchical nesting along the 35 km gravel/cobble lower Yuba River in California. Independent testing of flow convergence routing found that hydraulic patterns at every flow matched the essential predictions from classification, substantiating the process–morphology link. River width and bed elevation sequences exhibit large, nonrandom, and linked oscillations structured to preferentially yield wide bars and constricted pools at base flow and bankfull flow. At a flow of 8.44 times bankfull, there is still an abundance of wide bar and constricted pool landforms, but larger topographic drivers also yield an abundance of nozzle and oversized landforms. The nested structure of flow convergence routing landforms reveals that base flow and bankfull landforms are nested together within specific floodprone valley landform types, and these landform types control channel morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in‐channel, bankfull, and/or small flood flows. Such flows may initiate sediment transport, but they are too small to control landform organization in a gravel/cobble river with topographic complexity. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
168.
169.
博坤  孙思远  张永光 《探矿工程》2020,47(11):77-82
挤密钻头是潜孔锤冲击挤密钻进技术的关键所在,其结构形式直接影响着钻进效率、成孔质量和应用效果。应用非线性有限元理论,对动载荷作用下土体的弹塑性和压缩性的变化规律进行了分析。研究发现,常规钻头在冲击挤密钻进过程中产生的桩效应是导致钻进效率降低的主要原因。为了克服桩效应的影响,利用ANSYS/LSDYNA软件对阶梯式钻头和凸轮旋压钻头的钻进过程进行数值模拟分析,并通过实钻试验进行验证。数值模拟分析和试验结果均表明:凸轮旋压钻头能够有效避免钻进过程中土体回弹问题,降低桩效应对钻进效率的影响。试验结果与模拟结果相吻合,表明数值模拟的结果相对可靠。  相似文献   
170.
A new set of field data facilitates a detailed analysis of variations in bed material grain size within two confluent gravel-bed rivers in northeastern British Columbia, Canada. A preliminary assessment of grain-size variability establishes a basis for examination of the spatial pattern of grain-size change. Standard ANOVA techniques are inappropriate because individual samples have unequal variances and are not normally distributed. Alternative tests for homoscedasticity and comparison of means are therefore utilized. Within-site, between-sample variability is not significant. The grain-size distributions that were obtained at individual sites are therefore representative of the depositional environments that were sampled. In both rivers mean grain size does vary significantly between sites and there is therefore a basis for examining the data for spatial patterns such as downstream fining. Textural variations along the two rivers studied here are complex and show negligible overall fining (in over 100 km). This is the consequence of a large number of tributary inputs and non-alluvial sediment sources which are the legacy of Late Pleistocene glaciation. The identification of lateral sources like these is fundamental for understanding textural changes within rivers. The sedimentary link (a channel reach between significant lateral sediment inputs) provides a means of isolating fluvial maturation processes (abrasion and sorting) from contingent lateral inputs. Strong fining trends are apparent in most links and classification of grain-size measurements according to their location within particular links greatly improves the statistical explanation of textural variation. Identification of sedimentary links provides a means of applying models of fluvial fining processes, so isolation of link networks will aid the development of basin-scale models of textural variation. © 1998 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号