首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   907篇
  免费   176篇
  国内免费   41篇
测绘学   63篇
大气科学   9篇
地球物理   478篇
地质学   156篇
海洋学   23篇
天文学   1篇
综合类   51篇
自然地理   343篇
  2024年   2篇
  2023年   9篇
  2022年   19篇
  2021年   81篇
  2020年   61篇
  2019年   46篇
  2018年   37篇
  2017年   57篇
  2016年   53篇
  2015年   62篇
  2014年   54篇
  2013年   78篇
  2012年   37篇
  2011年   44篇
  2010年   47篇
  2009年   32篇
  2008年   60篇
  2007年   49篇
  2006年   44篇
  2005年   36篇
  2004年   36篇
  2003年   25篇
  2002年   24篇
  2001年   22篇
  2000年   17篇
  1999年   29篇
  1998年   15篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1124条查询结果,搜索用时 281 毫秒
91.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
92.
Models are widely used to simulate hydrological response and the generation and transport of constituents such as salt, phosphorus, and nitrogen from catchments to streams. Several models use a spatial representation with catchments divided into subcatchments. Variations in land use and other characteristics within subcatchments are represented by spatially lumped hydrologic response units (HRUs) or functional units instead of using fully distributed models. This approach disregards any spatial interaction between HRUs, including their connectivity to each other and to the stream and the influence of these interactions on water and constituent export. A spatially explicit hydrological model (Thales) was used to simulate a variety of theoretical catchments with soils dominated by combinations of infiltration excess, saturation excess, and subsurface stormflow processes and different soil constituent concentrations that were spatially interacting (i.e. located along a hillslope sequence). The modelling results show that the response of both runoff and concentration is sensitive to varying spatial arrangements due to interactions of runoff, infiltration, and chemical processes between the different soil types in many but not all situations. Results highlight the importance of considering connectivity of pathways when modelling hydrological response and constituents export. This is achieved by comparing pairs of simulations and the corresponding differences in the exported loads. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
93.
Water pollution from diffuse sources is a problem of increasing concern. Efforts to control diffuse pollution have been confined mainly to agricultural land and forests. Little attention has been paid to sources of diffuse pollution from urban areas. A diffuse nitrate modelling tool (DNMT) has been developed for modelling the fate of nitrate in urban areas. This tool works at the catchment scale and has a modular structure that consists of three components: the hydrological module, the nitrogen cycle module and the nitrate transport module. The hydrological model describes the possible flow pathways. The nitrogen cycle model accounts for the mass balance of nitrate and calculates the amount of nitrate for potential loss. The nitrate transport module simulates the movement of nitrate within and from the soil to the receiving water. This paper demonstrates the development of the tool and its application in the White Cart Water catchment. This implementation of the tool shows that it has a good capability for simulating the fate of nitrate in urban catchments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
94.
Reforestation of cleared land has the potential to reduce groundwater recharge, salt mobilization and streamflow. Stream salinity change is the net result of changes in stream salt load and streamflow. The net effect of these changes varies spatially as a function of climate, terrain and land cover. Successful natural resource management requires methods to map the spatial variability of reforestation impacts. We investigated salinity data from 2000 bores and streamflow and salinity measurements from 27 catchments in the Goulburn–Broken region in southeast Australia to assess the main factors determining stream salinity and opportunities for management through reforestation. For groundwater systems of similar geology, relationships were found between average annual rainfall and groundwater salinity and between groundwater salinity and low‐flow salinity. Despite its simplicity, we found that the steady‐state component of a simple conceptual coupled water–salt mass balance model (BC2C) adequately explained the spatial variation in streamflow and salinity. The model results suggest the efficiency of afforestation to reduce stream salinity could be increased by more than an order of magnitude through spatial planning. However, appreciable reductions in stream salinity in large rivers through land cover change alone would still require reforestation on an unprecedented scale. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
95.
J. L. Wang  Y. S. Yang 《水文研究》2008,22(21):4274-4286
DRASTIC has drawbacks in groundwater risk assessment that are important in guiding activities to prevention agricultural diffuse groundwater pollution. This paper presents an improved and GIS‐based D‐DRASTIC approach for groundwater nitrate risk assessment from diffuse agricultural sources based on DRASTIC. D‐DRASTIC considers the risk concept, nitrate loading, pollutant transport with runoff, depth to water, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and the hydraulic conductivity of the aquifer. D‐DRASTIC was developed within an ArcGIS environment and applied to the Upper Bann Catchment, Northern Ireland as a case study. D‐DRASTIC shows that ‘very high’ and ‘high’ zones of groundwater nitrate risk occupy 5% and 11% of the case study area, respectively. When considering groundwater pollution sources and pathways, the results using D‐DRASTIC are helpful in guiding the activities of groundwater pollution prevention at the catchment scale in the context of better implementation of the EU Water Framework Directive. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
96.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
97.
基于二维运动波模型,建立了一个适用于小流域场次降雨产汇流过程的动力学模型。通过对典型小流域内不同区域(坡顶、坡中及坡底区域及距离流域出口的远近)种植植被时产流过程的数值模拟,分析了小流域内植被分布对产流过程的影响。结果表明:植被分布及其特性对小流域场次降雨产流有较明显的影响;下游区域种植植被的减水效果和延滞洪峰作用优于上游区域,陡坡区域减水效果优于缓坡区域,且郁闭度越大,这种差别越明显;在该研究条件下,下游区的减水效果可达到上游区的3倍;30%郁闭度条件下减水效果可达10%和20%郁闭度条件下的3倍和1.4倍。  相似文献   
98.
为验证济南泉域的泉水来源,选取趵突泉周围13个取样点岩溶水中的微量元素Ba和Sr,运用PHREEQC软件对这两种元素进行不同比例的混合。结果表明,济南南部山区、东郊、西郊等处的岩溶水都对趵突泉泉水有不同程度的贡献,并首次试算出各个方向来水比例。这从水化学的角度说明,趵突泉水的来源是多源的。  相似文献   
99.
针对空间数据属性值的不精确对评价因子总体排序的影响的问题,该文提出了ELECTRE TRI算法与GIS结合的耕地适宜性评价方法。该方法可以抵消空间数据属性值的不精确对评价因子总体排序的影响,使评价结果更客观真实。在ELECTRE TRI算法的两种分类方法中,悲观分类法的阈值比较按照从高到低排序容易造成属性值的不精确,影响排序结果,而乐观分类法能较好地避免出现类似情况。两种评价结果的评价单元数在三种相应等级下重合评价单元较多。评价结果表明评价结果较为相近,具有一定准确合理性。研究结论对区域耕地利用结构调整、划定基本农田保护区以及促进耕地差别化管理具有一定的参考价值。  相似文献   
100.
Soil is a vital part of the natural environment and is always responding to changes in environmental factors, along with the influences of anthropogenic factors and land use changes. The long-term change in soil properties will result in change in soil health and fertility, and hence the soil productivity. Hence, the main aim of this paper focuses on the analysis of land use/land cover (LULC) change pattern in spatial and temporal perspective and to present its impact on soil properties in the Merawu catchment over the period of 18?years. Post classification change detection was performed to quantify the decadal changes in historical LULC over the periods of 1991, 2001 and 2009. The pixel to pixel comparison method was used to detect the LULC of the area. The key LULC types were selected for investigation of soil properties. Soil samples were analysed in situ to measure the physicochemical soil properties. The results of this study show remarkable changes in LULC in the period of 18?years. The effect of land cover change on soil properties, soil compaction and soil strength was found to be significant at a level of <0.05.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号