首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   38篇
  国内免费   11篇
测绘学   25篇
大气科学   5篇
地球物理   126篇
地质学   33篇
海洋学   8篇
综合类   2篇
自然地理   30篇
  2024年   2篇
  2023年   3篇
  2022年   8篇
  2021年   9篇
  2020年   13篇
  2019年   9篇
  2018年   3篇
  2017年   16篇
  2016年   10篇
  2015年   8篇
  2014年   15篇
  2013年   17篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   10篇
  2008年   10篇
  2007年   19篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有229条查询结果,搜索用时 265 毫秒
61.
A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean rates of wet canopy evaporation and rainfall derived previously for forests and an estimate of the roof storage capacity derived from the data collected in the previous study. Although the model prediction is sensitive to the value of storage capacity, close correlation between the modelled and measured runoff indicates that the model captures the essential processes. It is concluded that the process of evaporation from an urban roof is sufficiently similar to that from a forest canopy for forest evaporation models to be used to give a useful estimate of urban roof runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
62.
张娜  赵英时 《遥感学报》2007,11(1):9-19
本研究建立了一个反映植被辐射传输和几何光学特性的混合模型,以模拟半干旱地区天然草地的多波段反射率值。该模型引入一个几何相似性参数,用以描述植株冠层的几何形状对叶/枝角分布、阴影地面比例、冠层和地面各光学分量、冠层反射率和总反射率的影响。模型模拟值与研究区3个不同退化程度羊草草地的实测值较为吻合,而且退化程度越轻的草地,模拟效果也越好。对于中度退化草地,在高度与冠幅之比(chw)不变的情况下,当45°≤太阳天顶角sza≤75°时,不同几何形状植株的总反射率之间无显著差异;当0°≤sza〈45°或75°〈sza≤90°时,锥体与球体和柱体植株的总反射率之间有较显著差异;而球体和柱体植株的总反射率之间始终无显著差异。当chw由小到大变化时,以上结论基本不变。  相似文献   
63.
Additional aspects regarding the optimum fixed and roving sampling techniques, to those already explored in a previous authors’ throughfall study, are further investigated here. The roving technique consists in the random repositioning, with a frequency fr, of N throughfall gauges among M positions (M > N), oppositely to the fixed or stationary arrangement where N = M. Both fixed and roving optimum sampling techniques of 100 monitored throughfall events sampled with 200 fixed gauges under a semideciduous tropical rain forest in Panama were investigated by means of Monte‐Carlo numerical experiments. Mean dispersion was shown to be always smaller in the roving versus the fixed gauge arrangement, independently of the relocation frequency studied (fr = 0.1, 0.2, 0.5, 1), such that all roving schemes with N ≥ 50 gauges lay within ±5% of the mean cumulative throughfall. Results indicated that a low variability, high precision, and accuracy are obtained with a modest relocation frequency fr = 0.2 (i.e. a relocation every five episodes of the original 100 measured events) and N = 30 roving gauges, with no significant improvement worth the extra field work beyond fr > 0.2 and N >30. Only by increasing the number of roving positions from M < < 200 to M = 200, the precision and accuracy of the mean estimate were improved without comprising additional labour. Hence, a roving sampling scheme which relocates gauges over completely new fresh sites each roving cycle is recommended for future throughfall studies. Finally, we designed an a priori sampling strategy which permitted us to conclude that using only the first 20 out of the total 100 measuring events, for the remaining 80 throughfall field measurements, N = 40 roving gauges (i.e. five time less than the originally 200 gauges displayed) would have been sufficient for ensuring ≤5% error, expressed as percentage of the mean cumulative throughfall. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
64.
Chunyu Dong  Lucas Menzel 《水文研究》2017,31(16):2872-2886
A camera network with hourly resolution was used to monitor the complex snow processes in montane forest environments. We developed a semi‐automatic procedure to interpret snow depths from the digital images, which exhibited high consistency with manual measurements and station‐based recordings. To extract snow interception dynamics, six binary classification methods were compared. The MaxEntropy classifier demonstrated better performance than the other methods under conditions of varying illumination and was therefore selected as the method used for quantifying snow in tree canopies. Snow accumulation and ablation on the ground, as well as snow loading and unloading in the forest canopies, were investigated using snow parameters derived from the time‐lapse photography monitoring. The influences of meteorologic conditions, forest cover, and elevation on the snow processes were also considered. Time‐lapse photography proved to be an effective and low‐cost approach for collecting useful information on snow processes and facilitating the set‐up of hydrological models.  相似文献   
65.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   
66.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
67.
The effect of Pinus radiata (D. Don) plantations on water resources at different Chilean sites located between 33 and 40 south was determined. Incoming precipitation, canopy interception loss, evapotranspiration, net evapotranspiration (transpiration and evaporation from the soil), percolation and soil water content were measured in each site, where Pinus radiata plantations were 12 to 17 years old and between 700 and 830 trees ha?1 dense. The results were compared with those obtained from areas covered with perennial grasses and shrubs at the same sites. The pine canopies intercepted on average 36–40% of the annual rainfall at all sites where rainfall was less then 1200 mm, while only 15% of the mean rainfall was intercepted in the southernmost and rainy (2081 mm year?1) site. Annual net evapotranspiration increased from south to north from 32% of the incoming precipitation for the southernmost site to 55% for the one located at the lower latitude. In this northernmost site almost the entire incoming precipitation was evapotranspired. Annual percolation registered its minimum value in the northern site (5% of incoming precipitation) and its maxima in the southern one (53%). The values of net evapotranspiration and percolation were regulated by the pluviometric regime and the soil moisture retention capacity in each site. Compared with the shrub or grass covers, sites under Pinus radiata plantations registered higher water consumption by evapotranspiration and reduced percolation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
68.
《水文科学杂志》2013,58(6):1208-1220
Abstract

Betel nut or betel palm (Areca catechu Linn.) has become a major cash crop in southern and central Taiwan since the mid-1980s. Many slopeland fruit orchards and forests have been converted to betel nut plantations. The total area of betel nut plantations has increased over the past 30 years, reaching a peak of 56 542 ha in 1997. The public and conservation groups frequently express great concern over the potential negative hydrological impacts of betel nut plantations on steep slopes. This investigation in central Taiwan examines the effects of hillslope betel nut plantations on hydrological processes. Differences in hydrological characteristics between plots planted with betel nut trees and those with other ground cover types were evaluated at two study sites. The tall, single-layer canopy and wide spacing between planted betel nut trees led to low interception losses, high throughfall and high net rainfall. Plots planted with betel nut trees had lower infiltration, higher surface runoff and higher erosion than forested sites. These hydrological characteristics can be related to factors such as crown cover, soil organic content and soil porosity in betel nut plantations. Streamflow data from three gauged watersheds with different proportions of total area planted with betel nut showed that where greater proportions of total area were planted with betel nut trees, there were higher annual streamflow/rainfall ratios, higher specific peak flows, steeper recessions and higher peak flow/baseflow ratios. The results from this study suggest that, in general, betel nut trees are less desirable from the soil and water conservation viewpoints than natural forests.  相似文献   
69.
干旱荒漠区绿洲边缘典型固沙灌木的降水截留特征   总被引:6,自引:0,他引:6  
在民勤绿洲边缘,降水对维持固沙灌木持续稳定发挥固沙功能具有重要作用。本文选择民勤绿洲边缘3种主要固沙灌木为研究对象,观测了降雨条件下降水穿透量和冠层截留量,分析了降水穿透量和冠层截留量与降雨量之间的关系以及截留率与降水强度之间的关系,比较了不同灌木群落的降水截留特征。结果表明,不同灌木的降水截留存在明显差异,梭梭、柽柳、生长良好白刺、衰退白刺冠层最大截留量和截留容量分别为0.6 mm、0.6 mm、0.4 mm、0.3 mm和0.8 mm、0.8 mm、0.5 mm、0.2 mm;在两年总降水量255.3 mm条件下,梭梭、柽柳和生长良好白刺3种灌木群落冠层截留损失分别为44 mm、88 mm和32 mm,占降水总量的16.6%、33.1%和12.0%;当降雨强度<0.8 mm·h-1,梭梭和柽柳降水截留率随降水强度增加均呈递减趋势;当降水强度>0.8 mm·h-1时,梭梭冠层截留量与降水量的比率基本稳定在0.2~0.3之间,柽柳在0.3~0.4之间;当降水强度<0.5 mm·h-1,生长良好白刺灌丛的降水截留率随降水强度增加呈下降趋势;当降雨强度>0.5 mm·h-1,生长良好白刺灌丛截留率基本维持在0.1~0.2之间;降雨强度>0.4 mm·h-1时,衰退白刺截留率稳定在0.05~0.1之间。  相似文献   
70.
Rainfall interception by sand-stabilizing shrubs related to crown structure   总被引:2,自引:0,他引:2  
On the edge of the Tengger Desert in northern China,revegetation has changed the landscape from moving dunes to stabilized dunes covered by shrubs,which further modifies the pattern of rainfall redistribution.To study rainfall interception loss by shrubs and its relationship to rainfall properties and crown structure,throughfalls passing through crowns of Artemisia ordosica Krash.and Caragana korshinskii Kom.were measured using nine PVC cups under the canopy of each of the two shrubs during 73 rain events over a three-year period,with total rainfall of 260.9 mm.Interception losses of gross rainfall by A.ordosica and C.korshinskii account for 15% and 27% of the total on a crown area basis,and 6% and 11% on a ground area basis,respectively.Individual throughfall(T) and interception(I) were significantly related to rainfall amount(Pg),duration(D),and intensity(R).Ratios of throughfall to rainfall(T/Pg) and interception to rainfall(I/Pg) were not only significantly related to Pg,D,and R,but also to shrub species,and interactions of species with crown volume(CV) and leaf area index(LAI).Under most rain events,interceptions by C.korshinskii with greater CV and LAI were significantly higher than those by A.ordosica,and more rainfall interception occurred at locations closer to the stems of the two shrubs.For C.korshinskii,I/Pg had a significant positive linear relation with CV and LAI,while T/Pg had a significant negative linear relation with them.CV has a greater influence on T/Pg and I/Pg than does LAI.Using a regression method,canopy water storage capacities are estimated to be 0.52 and 0.68 mm,and free throughfall coefficient to be 0.62 and 0.47 for A.ordosica and C.korshinskii,respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号