首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   38篇
  国内免费   11篇
测绘学   25篇
大气科学   5篇
地球物理   126篇
地质学   33篇
海洋学   8篇
综合类   2篇
自然地理   30篇
  2024年   2篇
  2023年   3篇
  2022年   8篇
  2021年   9篇
  2020年   13篇
  2019年   9篇
  2018年   3篇
  2017年   16篇
  2016年   10篇
  2015年   8篇
  2014年   15篇
  2013年   17篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   10篇
  2008年   10篇
  2007年   19篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
111.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   
112.
Di Wang  Li Wang 《水文研究》2019,33(3):372-382
Canopy interception is one of the most important processes in an ecosystem, but it is still neglected when assessing evapotranspiration (ET) partitioning in apple orchards on the Loess Plateau in China. To explore the importance of canopy interception, we monitored two neighbouring apple orchards on the Loess Plateau in China, one 8‐year‐old and the other 18‐years old at the start of the study, from May to September for four consecutive years (2013–2016). We measured parameters of canopy interception (I) including precipitation, throughfall, stemflow, leaf area index, transpiration (T), and soil evaporation (S) to quantify ET. The importance of canopy interception was then assessed by comparing the relationship between water supply (precipitation) and water demand (ET), calculated with and without considering canopy interception (T + S and T + S + I, respectively). Tree age clearly influenced canopy interception, as estimates of annual canopy interception during the study years in the younger and older orchards amounted to 22.2–29.4 mm and 26.8–39.9 mm, respectively. Daily incident rainfall and rainfall intensity in both orchards were significantly positively correlated with daily canopy interception in each year. The relationship between annual precipitation and annual ET (calculated with and without consideration of canopy interception) in the younger orchard differed during 2015 and 2016. Ignoring canopy interception would result in underestimation of annual ET in both apple orchards and hence incorrect evaluation of the relationship between water supply and water demand, particularly for the younger orchard during 2015 and 2016. Thus, for a complete understanding of water consumption in apple orchards in this and similar regions, canopy interception should not be ignored when assessing ET partitioning.  相似文献   
113.
青藏高原两种草甸类型人工降雨截留特征分析   总被引:3,自引:0,他引:3       下载免费PDF全文
选取青藏高原典型多年冻土区风火山小流域高寒草甸和沼泽化草甸典型样地进行人工降雨截留试验,综合运用统计分析、模型回归分析等方法,对两种草甸类型截留特征及其影响因子进行分析。结果表明:两种草甸类型对降雨的截留能力是不同的,高寒草甸最大截留量0.61mm,沼泽化草甸为0.18mm;高寒草甸的最大截留率为12.4%,沼泽化草甸为3.8%。通过分析各因子对截留的影响,得出高寒草甸截留量与降雨量呈对数函数关系,沼泽化草甸截留量与降雨量呈二次多项式关系;两种草甸截留量与降雨强度都呈幂函数关系,与植被盖度均呈线性相关关系。  相似文献   
114.
无人机航测技术在森林蓄积量估测中的应用   总被引:5,自引:0,他引:5  
无人机(UAV)航测技术是近年来发展起来的快速获取高分辨率影像的测绘新技术。森林蓄积量估算需要快速高效地获取森林遥感影像。虽然利用卫星和机载雷达同样可获取高分辨率遥感影像,但无人机航测技术与其相比具有飞行成本低、外业周期短、机动灵活等优点。本文利用无人机航测系统获取了案例地区DSM和DEM,采用最大邻域法提取了树高,采用分水岭算法分割了树冠信息,并以树高和冠幅作为解释变量的立木材积二元模型估算了森林蓄积量。结果表明,树高提取精度为83.73%,冠幅提取精度为86.98%,林分蓄积量估算精度为81.80%。  相似文献   
115.
ABSTRACT

The interception process impacts rainfall magnitude and intensity under the canopy. In this study, the effect of plant interception on throughfall characteristics was assessed in the deciduous Caatinga vegetation, at different canopy development stages and for temporal scales ranging from seasonal to the intra-event scale. Throughfall and stemflow percentages were slightly higher at the onset of the rainy season, when leaf area density is low, with resulting lower interception losses. However, there was no statistical difference among the variables at the seasonal scale. At the intra-event scale, average and maximum throughfall intensity at different time intervals showed statistical difference between the stages of canopy development. Regardless of leaf area density and rainfall depth, vegetation is able to retain all the water up to 2 min in the beginning of each rainfall event with accumulated rainfall smaller than 0.6 mm. Furthermore, the Caatinga vegetation attenuates the rainfall intensity by 30–40%.  相似文献   
116.
The Schesa, a sinister contributory torrent to the Ill river near Bludenz (federal province of Vorarlberg) is the largest basin-shaped gully of Middle Europe and endangers the underlying villages by torrential debris flow and gigantic mass movements. The catchment is characterized by a complex geological situation, high annual precipitation and torrential rains from spring to early autumn, which cause enormous amounts of surface runoff. Based on field investigations comprising rain simulation experiments on representative plots, investigations on land-use, vegetation cover, soil physical characteristics, geology, hydrogeology and other features of the catchment area, surface runoff coefficient maps were developed. They formed the basis for assessment of runoff potential for different scenarios in vegetation cover and land-use intensity. Calculation of runoff for the recurrent design event by use of an improved run-time method showed the urgent necessity of runoff reduction measures in large parts of the catchment area above the gully. Based on the modelling results a concept for reduction of both, surface runoff and amount of deep percolating water has been elaborated.  相似文献   
117.
Little is understood about how storage of water on forest canopies varies during rainfall, even though storage changes intensity of throughfall and thus affects a variety of hydrological processes. In this study, laboratory rainfall simulation experiments using varying intensities yielded a better understanding of dynamics of rainfall storage on woody vegetation. Branches of eight species generally retained more water at higher rainfall intensities than at lower intensities, but incremental storage gains decreased as rainfall intensity increased. Leaf area was the best predictor of storage, especially for broadleaved species. Stored water ranged from 0.05 to 1.1 mm effective depth on leaves, depending on species and rainfall intensity. Storage was generally about 0.2 mm greater at rainfall intensity 420 mm h−1 than at 20 mm h−1. Needle-leaved branches generally retained more water per leaf area than did branches from broadleaved species, but branches that stored most at lower rainfall intensities tended to accumulate less additional storage at higher intensities. A simple nonlinear model was capable of predicting both magnitude (good model performance) and temporal scale (fair model performance) of storage responses to varying rainfall intensities. We hypothesize a conceptual mechanical model of canopy storage during rainfall that includes the concepts of static and dynamic storage to account for intensity-driven changes in storage. Scaling up observations to the canopy scale using LAI resulted in an estimate of canopy storage that generally agrees with estimates by traditional methods.  相似文献   
118.
Measurements of saturated hydraulic conductivity (Ks) and diagnostic model simulations show that all types of logging road/trail in the 14·4 ha Bukit Tarek Experimental Catchment 3 (BTEC3) generate substantial Horton overland flow (HOF) during most storms, regardless of design and level of trafficking. Near‐surface Ks(0–0·05 m) on the main logging road, skid trails and newly constructed logging terraces was less than 1, 2 and 34 mm h?1, respectively. Near‐surface Ks on an abandoned skid trail in an adjacent basin was higher (62 mm h?1), owing to the development of a thin organic‐rich layer on the running surface over the past 40 years. Saturated hydraulic conductivity measured at 0·25 m below the surface of all roads was not different (all <6 mm h?1) and corresponded to the Ks of the adjacent hillslope subsoil, as most roads were excavated into the regolith more than 0·5–1 m. After 40 years, only limited recovery in near‐surface Ks occurred on the abandoned skid trail. This road generated HOF after the storage capacity of the upper near‐surface layer was exceeded during events larger than about 20 mm. Thus, excavation into low‐Ks substrate had a greater influence on the persistence of surface runoff production than did surface compaction by machinery during construction and subsequent use during logging operations. Overland flow on BTEC3 roads was also augmented by the interception of shallow subsurface flow traveling along the soil–saprolite/bedrock interface and return flow emerging from the cutbank through shallow biogenic pipes. The most feasible strategy for reducing long‐term road‐related impacts in BTEC3 is limiting the depth of excavation and designing a more efficient road network, including minimizing the length and connectivity of roads and skid trails. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
119.
典型表层岩溶泉域植被对降雨的再分配研究   总被引:1,自引:1,他引:0  
本文在表层岩溶泉域植被结构特征分析的基础上,监测桂林丫吉试验场S31号泉域内香椿和云实两种主要植被的穿透雨和树干径流特征以及钻孔和表层岩溶水的变化。结果表明:香椿林的总穿透雨量1 861.83 mm,占总降雨总量的59.65%;云实灌丛总的穿透雨量为1 626.42 mm,占总降雨量的52.11%;穿透雨率随降雨量增加而减少。香椿林的树干径流总量为89.4 mm,占总降雨量的2.86%;云实灌丛的树干径流总量为27.79 mm,占总降雨量的0.89%;香椿林和云实灌丛的林冠截留总量分别为1 169.97 mm和1 466.99 mm,平均截留率为37.48%和47.01%;用水量平衡法计算得出以灌丛覆盖为主的S31号表层岩溶泉域年蒸散量为1 623.81 mm,占降水量的52.03 %,年径流深度为1 497.39 mm,占降水量的47.97%。植被冠层改变了降雨对表层岩溶带的补给形式和补给量。降雨经过植被冠层的截留后转化成穿透雨和树干径流进入表层岩溶带,穿透雨以连续波状的形式补给表层岩溶带,而树干径流则以快速集中的方式补给表层岩溶带。   相似文献   
120.
Snow that is retained by a forest canopy may either sublimate or evaporate directly from the crown or drop as snow clumps or meltwater to the ground. Redistributed snow and meltwater affect the snow structure and prevent the formation of mechanically weak layers, which is the prerequisite for avalanche formation in forests. In this paper we describe the results of dye tracer experiments conducted in a subalpine forest near Davos, Switzerland. Before a snowfall event we stained snow‐free branches of a spruce with a dye tracer solution. After snowfall the coloured meltwater dripping from the branches down on to the snowpack stained the percolation pathways of the meltwater in the snowpack. Photographs of the snow profiles indicate that the meltwater seeped almost vertically through the isothermal snowpack to the soil surface not exceeding the projected crown edge. Meltwater of different events moves along different preferential flow channels in the snow suggesting that old channels are not non‐conducting and additional meltwater fronts create new channels. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号