首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2421篇
  免费   671篇
  国内免费   791篇
测绘学   323篇
大气科学   184篇
地球物理   1059篇
地质学   1575篇
海洋学   252篇
天文学   66篇
综合类   291篇
自然地理   133篇
  2024年   8篇
  2023年   26篇
  2022年   80篇
  2021年   110篇
  2020年   128篇
  2019年   168篇
  2018年   128篇
  2017年   126篇
  2016年   174篇
  2015年   177篇
  2014年   169篇
  2013年   176篇
  2012年   212篇
  2011年   199篇
  2010年   171篇
  2009年   218篇
  2008年   178篇
  2007年   207篇
  2006年   143篇
  2005年   149篇
  2004年   138篇
  2003年   129篇
  2002年   102篇
  2001年   86篇
  2000年   76篇
  1999年   64篇
  1998年   73篇
  1997年   53篇
  1996年   40篇
  1995年   44篇
  1994年   26篇
  1993年   22篇
  1992年   20篇
  1991年   13篇
  1990年   9篇
  1989年   13篇
  1988年   6篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
排序方式: 共有3883条查询结果,搜索用时 46 毫秒
71.
块状岩体边坡地震滑动位移分析   总被引:13,自引:3,他引:13  
岩体边坡在强震作用下往往会产生滑动残余位移。这种位移是边坡稳定性评价的重要参量。本文利用块体动力学原理推导出层状和块状岩体边坡地震滑动位移微分方程式, 并编制了相应的计算程序, 给出了实例的计算结果。  相似文献   
72.
单新建  柳稼航  马超 《地震学报》2004,26(5):474-480
利用差分干涉雷达测量技术获取的宏观震中区的同震形变场,结合对地震活动性、震源机制、野外考察等资料分析,对昆仑山口西8.1级地震同震形变场特征进行了研究. 结果表明:宏观震中位于库赛湖东北侧,宏观震中区发震断层可分为两个形变中心区域,其中西段长约42 km,东段长约48 km,整个发震断层主破裂段长90 km;由干涉形变条纹分布格局可清楚地判断出发震断层的左旋走滑特征;断层两盘变形特征不同,南盘变形程度明显大于北盘;宏观震中附近最大斜距向位移量为288.4 cm,最小斜距向位移量为224.0 cm,宏观震中发震断层最大左旋水平位错为738.1 cm,最小地面左旋水平位错为551.8 cm.   相似文献   
73.
朱燕 《内陆地震》2004,18(2):162-168
通过分析、比较1996--2003年喀什地震台站记录到的新疆伽师及附近地区发生的多次6级地震的地磁前兆异常特征,发现在这几组地震活动过程中喀什地震台的地磁表现出不同的异常特征,说明与地震破裂特征有更深层次的相关性,且地磁响应比异常和总强度差值异常在一定程度上反映了台站周围小范围的震源区介质电性结构的变化。巴楚-伽师6.8级地震前地磁异常特征并不十分突出,有别于1996—1998年伽师强震群震前地磁异常量较丰富的特点。  相似文献   
74.
The paper introduces the horizontal crustal movement obtained from GPS observations in the regional networks (including the basic network and the fiducial network) of the Crustal Movement Observation Network of China (CMONOC) carried out in 1999 and 2001. This paper is characterized by the acquisition of the horizontal displacement velocities during the period from 1999 to 2001 at the observation stations in the regional networks with datum definition of a group of stable stations with small mutual displacements in east China. Based on the most detailed map of horizontal crustal movement in Chinese mainland, the division of blocks, their displacements and deformations are studied. An approach to analysis of the intensity of the horizontal crustal deformation is proposed. The general characteristics of the recent horizontal crustal movement in Chinese mainland and that before the Kunlunshan earthquake of M=8.1 on November 14, 2001 are analyzed. Foundation item: The National Development and Programming Project for Key Basic Research (95-13-03-07).  相似文献   
75.
Abstract Several differently scaled strike‐slip faults were examined. The faults shared many geometric features, such as secondary fractures and linkage structures (damage zones). Differences in fault style were not related to specific scale ranges. However, it was recognized that differences in style may occur in different tectonic settings (e.g. dilational/contractional relays or wall/linkage/tip zones), different locations along the master fault or different fault evolution stages. Fractal dimensions were compared for two faults (Gozo and San Andreas), which supports the idea of self‐similarity. Fractal dimensions for traces of faults and fractures of damage zones were higher (D ~1.35) than for the main fault traces (D ~1.005) because of increased complexity due to secondary faults and fractures. Based on the statistical analysis of another fault evolution study, single event movements in earthquake faults typically have a maximum earthquake slip : rupture length ratio of approximately 10?4, although this has only been established for large earthquake faults because of limited data. Most geological faults have a much higher maximum cumulative displacement : fault length ratio; that is, approximately 10?2 to 10?1 (e.g. Gozo, ~10?2; San Andreas, ~10?1). The final cumulative displacement on a fault is produced by accumulation of slip along ruptures. Hence, using the available information from earthquake faults, such as earthquake slip, recurrence interval, maximum cumulative displacement and fault length, the approximate age of active faults can be estimated. The lower limit of estimated active fault age is expressed with maximum cumulative displacement, earthquake slip and recurrence interval as T ? (dmax /u) · I(M).  相似文献   
76.
Large magnitude earthquakes generated at source–site distances exceeding 100km are typified by low‐frequency (long‐period) seismic waves. Such induced ground shaking can be disproportionately destructive due to its high displacement, and possibly high velocity, shaking characteristics. Distant earthquakes represent a potentially significant safety hazard in certain low and moderate seismic regions where seismic activity is governed by major distant sources as opposed to nearby (regional) background sources. Examples are parts of the Indian sub‐continent, Eastern China and Indo‐China. The majority of ground motion attenuation relationships currently available for applications in active seismic regions may not be suitable for handling long‐distance attenuation, since the significance of distant earthquakes is mainly confined to certain low to moderate seismicity regions. Thus, the effects of distant earthquakes are often not accurately represented by conventional empirical models which were typically developed from curve‐fitting earthquake strong‐motion data from active seismic regions. Numerous well‐known existing attenuation relationships are evaluated in this paper, to highlight their limitations in long‐distance applications. In contrast, basic seismological parameters such as the Quality factor (Q‐factor) could provide a far more accurate representation for the distant attenuation behaviour of a region, but such information is seldom used by engineers in any direct manner. The aim of this paper is to develop a set of relationships that provide a convenient link between the seismological Q‐factor (amongst other factors) and response spectrum attenuation. The use of Q as an input parameter to the proposed model enables valuable local seismological information to be incorporated directly into response spectrum predictions. The application of this new modelling approach is demonstrated by examples based on the Chi‐Chi earthquake (Taiwan and South China), Gujarat earthquake (Northwest India), Nisqually earthquake (region surrounding Seattle) and Sumatran‐fault earthquake (recorded in Singapore). Field recordings have been obtained from these events for comparison with the proposed model. The accuracy of the stochastic simulations and the regression analysis have been confirmed by comparisons between the model calculations and the actual field observations. It is emphasized that obtaining representative estimates for Q for input into the model is equally important.Thus, this paper forms part of the long‐term objective of the authors to develop more effective communications across the engineering and seismological disciplines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
77.
叠前深度偏移述评   总被引:4,自引:2,他引:4  
叠前深度偏移是理想的改善复杂地区和强横向速度变化的地震资料成像技术,笔者就4种典型叠前深度偏移方法的理论基础与技术特点,存在的问题及国内外最新进展进行了讨论.  相似文献   
78.
成像测井技术在碳酸盐岩水平井中的应用   总被引:4,自引:1,他引:4  
塔里木盆地北部地区碳酸盐岩油藏储层,非均质性较强,只依靠常规测井判断碳酸盐岩裂缝、溶孔、溶洞很困难.利用地层微电阻率扫描成像(FMI),对碳酸盐岩水平井储层进行定性分析、定量解释,并能准确识别出碳酸盐岩目的层裂缝的性质、大小、开度、溶蚀孔洞原生孔隙、次生孔隙的发育情况等.同时并利用测试、酸压资料验证了使用成像测井判断裂缝的有效性.  相似文献   
79.
女34断块水平井提高采收率开发实践   总被引:1,自引:0,他引:1  
舍女寺油田女34断块是大港油区典型的低渗透块状砂岩断块油藏,由于储层严重的非均质性,注水开发见效快、水淹快,并且形成油藏次生底水,作为水平井技术改善低渗透油藏开发效果的先导试验区块,经过深入地质研究和可行性论证,又相继完钻2口水平井,同时进行注采井网调整,编制了水平井和直井采油、直井注水的混合外网调整方案,方案实施后,断块采油速度由0.6%提高到2.6%,采收率提高8个百分点,开发效果显改善,实践证明水半井技术是改善低渗透非均质断块油藏开发效果的有效手段之一。  相似文献   
80.
辽西医巫闾山地区中生代两期韧性变形的研究   总被引:3,自引:0,他引:3  
医巫闾山地区的韧性剪切构造是中生代两期韧性变形作用的产物。早期韧性变形中a线理发育,线理走向和糜棱面理走向基本一致,线理在xy面上的侧伏角绝大多数<30°;该期韧性变形是以左行走滑运动为主。晚期韧性变形中a线理发育,线理倾伏向和糜棱岩中糜棱面理倾向相近,线理在xy面上侧伏角主要在45°~90°之间;该期韧性变形是伸展作用的产物。医巫闾山中生代两期韧性剪切变形作用表明,在侏罗纪至早白垩世期间辽西地区不仅发生了强烈挤压推覆作用和伸展作用,也发生了大规模左行走滑作用。该韧性变形作用的发现对进一步研究辽西中生代的构造演化序列、期次和构造格架转换等问题有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号