首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   44篇
  国内免费   69篇
测绘学   20篇
大气科学   22篇
地球物理   66篇
地质学   195篇
海洋学   33篇
天文学   131篇
综合类   9篇
自然地理   34篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   21篇
  2019年   15篇
  2018年   15篇
  2017年   8篇
  2016年   11篇
  2015年   13篇
  2014年   14篇
  2013年   27篇
  2012年   9篇
  2011年   19篇
  2010年   17篇
  2009年   41篇
  2008年   53篇
  2007年   44篇
  2006年   31篇
  2005年   24篇
  2004年   15篇
  2003年   17篇
  2002年   20篇
  2001年   13篇
  2000年   8篇
  1999年   8篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   7篇
  1992年   8篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有510条查询结果,搜索用时 46 毫秒
41.
M.H. Moore  R.F. Ferrante  J.N. Stone 《Icarus》2007,190(1):260-273
Although water- and ammonia-ices have been observed or postulated as important components of the icy surfaces of planetary satellites in the outer Solar System, significant gaps exist in our knowledge of the spectra and behavior of such mixtures under astrophysical conditions. To that end, we have completed low-temperature spectroscopic studies (1-20 μm) of water-ammonia mixtures, with an emphasis on features in the near-IR, a region which is accessible to ground-based observations. The influences of composition, formation temperature, thermal- and radiation-processing, and phase (crystalline or amorphous) of the components were examined. Spectra of both pure NH3 and H2O-NH3 icy mixtures with ratios from 0.7 to 57 were measured at temperatures from 10 to 120 K. Conditions for the formation and thermal stability of the ammonia hemihydrate (2NH3⋅H2O) and the ammonia monohydrate (NH3⋅H2O) have been examined. Band positions of NH3 in different H2O-ices and major band positions of the hydrates were measured. We report spectral shifts that depend on concentration and temperature. The radiation-induced amorphization of the hemihydrate was observed and the radiation destruction of NH3 in H2O-ices was measured. Implications of these results for the formation, stability, and detection of ammonia on outer satellite surfaces are discussed.  相似文献   
42.
For many years an ongoing research program performed at our laboratory has had the aim to investigate the implantation of reactive ions in ices relevant to planetology by using IR spectroscopy. We present new results obtained by implanting 200 keV sulfur ions into water ice at 80 K. We have looked at the formation of sulfur-bearing molecules such as sulfuric acid, sulfur dioxide and hydrogen sulfide. We find that hydrated sulfuric acid is formed with high yield (0.65±0.1 molecules/ion). An upper limit to the production yield of SO2 (Y0.025 molecules/ion) has been estimated; no hydrogen sulfide has been detected. The formation of hydrogen peroxide is confirmed. Ozone is not detected. The results are discussed relevant to the inquiry on the radiolytic sulfur cycle considered responsible for the formation of sulfur-bearing molecules on the surfaces of the Galilean satellites. We demonstrate that sulfur implantation efficiently forms hydrated sulfuric acid whose observed abundance is explained as caused by an exogenic process. It is more difficult to say if the observed sulfur dioxide is quantitatively supported by only sulfur implantation; additional experimental studies are necessary along with direct observations, especially at UV wavelengths such as those that could be performed by instruments on board Hubble Space Telescope or by the forthcoming World Space Observatory (WSO/UV).  相似文献   
43.
This article demonstrates how the generalisation of topographic surfaces has been formalised by means of graph theory and how this formalised approach has been integrated into an ISO standard that is employed within nanotechnology. By applying concepts from higher-dimensional calculus and topology, it is shown that Morse functions are those mappings that are ideally suited for the formal characterisation of topographic surfaces. Based on this result, a data structure termed weighted surface network is defined that may be applied for both the characterisation and the generalisation of the topological structure of a topographic surface. Hereafter, the focus is laid on specific issues of the standard ISO 25178-2; within this standard change trees, a data structure similar to weighted surface networks, are applied to portray the topological information of topographic surfaces. Furthermore, an approach termed Wolf pruning is used to simplify the change tree, with this pruning method being equivalent to the graph-theoretic contractions by which weighted surface networks can be simplified. Finally, some practical applications of the standard ISO 25178-2 within nanotechnology are discussed.  相似文献   
44.
In flowing water the incipient motion of sediment can be affected by the presence of microbial biofilm growth. This article documents a series of flume experiments using non‐uniform sediments, in which sediment entrainment was investigated for cases where the sediment was immersed in deionized water, so that no biofilm developed, and for cases where a bio‐sediment was cultivated by placing the sediment in a mixture of natural water and nutrient solution. Differences in entrainment and the velocity at incipient motion were measured over an eight week period, as biofilm grew. It was found that the incipient motion phenomena were quite distinct between the two kinds of sediment. Sediment with biofilm was more stable and, over time, incipient velocity increased to a threshold level, before declining. Biofilm development is clearly an important control on the stability of sediments, especially in eutrophic water bodies. Two incipient velocity formulas were derived for sliding and rolling conditions. Film water theory was utilized to describe the cohesive force between sediment particles and the adhesive force generated by biofilm was introduced into the formula derivation; the time variation characteristics of biofilm strength and the features of the substrate were also taken into consideration. Such analyses can help to predict sediment transport changes due to biofilm presence in nutrient‐rich water bodies.  相似文献   
45.
In this article, we investigate the main parameters that influence the propagation of a fluid‐driven fracture in a poroelastoplastic continuum. These parameters include the cohesive zone, the stress anisotropy, and the pore pressure field. The fracture is driven in a permeable porous domain that corresponds to weak formation by pumping of an incompressible viscous fluid at the fracture inlet under plane strain conditions. Rock deformation is modeled with the Mohr–Coulomb yield criterion with associative flow rule. Fluid flow in the fracture is modeled by the lubrication theory. The movement of the pore fluid in the surrounding medium is assumed to obey the Darcy law and is of the same nature as the fracturing fluid. The cohesive zone approach is used as the fracture propagation criterion. The problem is modeled numerically with the finite element method to obtain the solution for the fracture length, the fracture opening, and the propagation pressure as a function of the time and distance from the pumping inlet. It is demonstrated that the plastic yielding that is associated with the rock dilation in an elastoplastic saturated porous continuum is significantly affected by the cohesive zone characteristics, the stress anisotropy, and the pore pressure field. These influences result in larger fracture profiles and propagation pressures due to the larger plastic zones that are developing during the fracture propagation. Furthermore, it is also found that the diffusion process that is a major mechanism in hydraulic fracture operations influences further the obtained results on the fracture dimensions, plastic yielding, and fluid pressures. These findings may explain partially the discrepancies in net pressures between field measurements and conventional model predictions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
46.
Ganymede's grooved terrain likely formed during an epoch of global expansion, when unstable extension of the lithosphere resulted in the development of periodic necking instabilities. Linear, infinitesimal-strain models of extensional necking support this model of groove formation, finding that the fastest growing modes of an instability have wavelengths and growth rates consistent with Ganymede's grooves. However, several questions remain unanswered, including how nonlinearities affect instability growth at large strains, and what role instabilities play in tectonically resurfacing preexisting terrain. To address these questions we numerically model the extension of an icy lithosphere to examine the growth of periodic necking instabilities over a broad range of strain rates and temperature gradients. We explored thermal gradients up to 45 K km−1 and found that, at infinitesimal strain, maximum growth rates occur at high temperature gradients (45 K km−1) and moderate strain rates (10−13 s−1). Dominant wavelengths range from 1.8 to 16.4 km (post extension). Our infinitesimal growth rates are qualitatively consistent with, but an order of magnitude lower than, previous linearized calculations. When strain exceeds ∼10% growth rates decrease, limiting the total amount of amplification that can result from unstable extension. This fall-off in growth occurs at lower groove amplitudes for high-temperature-gradient, thin-lithosphere simulations than for low-temperature-gradient, thick-lithosphere simulations. At large strains, this shifts the ideal conditions for producing large amplitude grooves from high temperature gradients to more moderate temperature gradients (15 K km−1). We find that the formation of periodic necking instabilities can modify preexisting terrain, replacing semi-random topography up to 100 m in amplitude with periodic ridges and troughs, assisting the tectonic resurfacing process. Despite this success, the small topographic amplification produced by our model presents a formidable challenge to the necking instability mechanism for groove formation. Success of the necking instability mechanism may require rheological weakening or strain localization by faulting, effects not included in our analysis.  相似文献   
47.
We present results obtained for Epinal (H5), an ordinary chondrite meteorite, irradiated with 60 keV Ar++ ions, simulating solar wind heavy particle irradiation. Bidirectional reflectance spectra (0.3-2.67 μm) measured after irradiating Epinal samples with different ion fluences exhibit a progressive reddening that is similar to the spread of spectra observed for S-type near-Earth asteroids. The timescales for inducing the same effects in space as those obtained in laboratory are estimated to be 104-106 yr. These results suggest irradiation by heavy ions may be a very efficient weathering process in near-Earth space.  相似文献   
48.
W.M. Grundy  L.A. Young 《Icarus》2004,172(2):455-465
We present eight new 0.8 to 2.4 μm spectral observations of Neptune's satellite Triton, obtained at IRTF/SpeX during 2002 July 15-22 UT. Our objective was to determine how Triton's near-infrared spectrum varies as Triton rotates, and to establish an accurate baseline for comparison with past and future observations. The most striking spectral change detected was in Triton's nitrogen ice absorption band at 2.15 μm; its strength varies by about a factor of two as Triton rotates. Maximum N2 absorption approximately coincides with Triton's Neptune-facing hemisphere, which is also the longitude where the polar cap extends nearest Triton's equator. More subtle rotational variations are reported for Triton's CH4 and H2O ice absorption bands. Unlike the other ices, Triton's CO2 ice absorption bands remain nearly constant as Triton rotates. Triton's H2O ice is shown to be crystalline, rather than amorphous. Triton's N2 ice is confirmed to be the warmer, hexagonal, β N2 phase, and its CH4 is confirmed to be highly diluted in N2 ice.  相似文献   
49.
A 1-D collisional Monte Carlo model of Europa's atmosphere is described in which the sublimation and sputtering sources of H2O molecules and their molecular fragments are accounted for as well as the radiolytically produced O2. Dissociation and ionization of H2O and O2 by magnetospheric electron, solar UV-photon and photo-electron impact, and collisional ejection from the atmosphere by the low-energy plasma are taken into account. Reactions with the surface are discussed, but only adsorption and atomic oxygen recombination are included in this model. The size of the surface-bounded oxygen atmosphere of Europa is primarily determined by a balance between atmospheric sources from irradiation of the satellite's icy surface by the high-energy magnetospheric charged particles and atmospheric losses from collisional ejection by the low-energy plasma, photo- and electron-impact dissociation, and ionization and pick-up from the surface-bounded atmosphere. A range of sources rates for O2 to H2O are used with a larger oxygen-to-water ratio than suggested by laboratory measurements in order to account for differences in adsorption onto grains in the regolith. These calculations show that the atmospheric composition is determined by both the water and oxygen photochemistry in the near-surface region, escape of suprathermal oxygen and water into the jovian system, and the exchange of radiolytic water products with the porous regolith. For the electron impact ionization rates used, pick-up ionization is the dominant oxygen loss process, whereas photo-dissociation and atmospheric sputtering are the dominant sources of neutral oxygen for Europa's neutral torus. Including desorption and loss of water enhances the supply of oxygen species to the neutral torus, but hydrogen produced by radiolysis is the dominant source of neutrals for Europa's torus in these models.  相似文献   
50.
Interface damage and delamination is usually accompanied by frictional slip at contacting interfaces under compressive normal stress. The present work is concerned with an analysis of progressive interface failure using the cohesive crack model with the critical stress softening and frictional traction present at the contact. Both monotonic and cyclic loadings are considered for anti‐plane shear of an elastic plate bonded to a rigid substrate by means of cohesive interface. An analytical solution can be obtained by neglecting the effect of minor shear stress component. The analysis of progressive delamination process revealed three solution types, namely: short, medium and long plate solutions. The long plate solution was obtained under an assumption of quasistatic progressive growth of the delamination zone. In view of snap back response, the quasistatic deformation process cannot be executed by either traction or displacement control. The states of frictional slip accompanied by shake down or incremental failure are distinguished in the case of cyclic loading, related to load amplitude and structural dimensions. The analysis provides a reference solution for numerical treatment of more complex cases. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号