首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   7篇
  国内免费   11篇
地球物理   12篇
地质学   58篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   8篇
  1994年   1篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
排序方式: 共有70条查询结果,搜索用时 78 毫秒
21.
An integrated field, petrological and geochronological study of the Basong Tso region of south‐eastern Tibet has constrained the timing and PT conditions of north–south Lhasa terrane accretion and provides new insight into the tectonothermal evolution of the Tibetan plateau. Two distinct high‐grade metamorphic belts are recognized in the region: a southern belt (the Basong Tso complex) that consists of sheared schist and orthogneiss; and a northern belt (the Zhala complex) that comprises paragneiss and granite. Combined pseudosection modelling and U–Pb geochronology of monazite and zircon indicates that the Basong Tso complex records peak metamorphic conditions of 9 ± 0.5 kbar and 690 ± 25 °C at c. 204–201 Ma, whereas the Zhala complex experienced peak metamorphic conditions of 5.0 ± 1.0 kbar and 740 ± 40 °C at c. 198–192 Ma. Microstructural analysis suggests that the two belts share a common early prograde history, after which the Basong Tso complex attained peak conditions following rapid burial, and the Zhala complex approached peak conditions along an isobaric path. Overall it is inferred that the Basong Tso and Zhala complexes represent the lower and upper structural levels of an evolving orogen that underwent Barrovian‐type metamorphism following collision (M1), followed by Buchan‐style overprinting at higher structural levels due to heat advection by syn‐tectonic granites (M2). Mylonitization (sensu lato) of the Basong Tso complex and juxtaposition of the two units occurred after attainment of peak conditions. The dominance of Mesozoic regional metamorphism across most of the Tibetan plateau indicates that Cenozoic crustal thickening processes, where present, are only manifested at depth.  相似文献   
22.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   
23.
24.
This paper provides further evidence for the ongoing discussion as to whether the Dabie UHPM belt formed in Triassic or Palaeozoic time, and whether the Sulu UHPM belt formed in Triassic or Neoproterozoic time. Combined use of laser Raman spectrometer (LR), cathodoluminescence imaging (CL), and ion probe U–Pb in‐situ dating (SHRIMP) provided accurate ages of UHPM from rocks collected from Weihai, NE Sulu UHPM belt. LR was used to identify coesite and other UHP minerals as inclusions in zircon separates from an amphibolized peridotite and an eclogite. CL was used to examine the zoning structure of these zircon, and SHRIMP dating was performed on specific spots on zircon to obtain ages of different geological events. An age of 221 ± 12 Ma was obtained for coesite‐bearing zircon from the amphibolized peridotite; an age of 228 ± 29 Ma for eclogite was obtained from the lower intercept of a concordia plot. These ages are interpreted as the time of UHPM in the Weihai region. Ultramafic rocks to the east of Weihai yield a magmatic age at 581 ± 44 Ma. The zircon in the ultramafic rocks possibly also records a thermal event at c. 400 Ma, but no independent geological evidence for this event has been found. The eclogite protolith formed in the Middle Proterozoic (1821 ± 19 Ma), which is similar to the age of country rock gneisses of 1847–1744 Ma. The new geochronological data confirm that UHPM occurred in the Triassic in the Sulu area when subduction took the ultramafic body and the eclogite protolith, together with the adjacent supracrustal rocks, to mantle depths.  相似文献   
25.
本文总结了近年来有关高压-超高压变质电气石的研究成果,并在此基础上指出未来该领域的重点研究方向.电气石是一种分布广泛的矿物.实验证明其稳定存在的温度大于850℃,压力大于4 GPa.由于较慢的空间扩散作用、复杂的成分替代关系和较高的环境敏感度,电气石可以保存完好的生长环带.这有助于我们分析同位素演化、变质流体成分、岩石变质历史等.高压-超高压电气石结构化学研究表明电气石结构中的某些元素含量(如Al和F含量)和矿物的形成温度具有很好的相关性.根据不同的硼同位素来源,高压-超高压变质电气石的生长模型可以分为A型电气石、B型电气石和C型电气石.通过分析出露在全球各地的代表性高压-超高压变质电气石,其特征总体表现为:①多为镁电气石;②X晶位具有很高的占位率(>0.8 pfu);③化学结构中硼元素具有过量特征(3.2~3.3 pfu);④Ti、Mn、Li、Cl含量很低;⑤硼同位素成分的变化范围为:-16% <δ11B<+ 1‰.未来高压-超高压变质电气石的研究重点应该放在电气石晶体化学和变质p-t条件的关系、电气石-流体之间微量元素的分异作用以及含硼矿物组合的相平衡模拟等.  相似文献   
26.
超高压变质岩中柯石英→石英相变研究的进展   总被引:1,自引:0,他引:1  
龙卧云  孟大维 《世界地质》2003,22(3):252-257
柯石英是石英的高压同质多相变体,是超高压变质作用的产物,它是识别超高压变质作用的重要标志矿物。柯石英的发现表明了近地表的岩石随板块运动曾被俯冲至地下大于90km的深度并经受了超高压变质作用。研究柯石英→石英相变过程中的微结构变化,对进一步研究超高压变质作用的机理及超高压变质岩折返过程的动力学机制具有重要意义。本文简述了近年来有关超高压变质岩中柯石英→石英相变研究的一些进展。  相似文献   
27.
The studies on ultra-microstructue characteristics of quartz exsolution in eclogite and coesite in UHP eclogite of several localities are done with the appliance of laser Raman spectroscopy and Ustage. Research results show that the phase transformation of coesite-quartz in garnet and/or omphacite is a continuous process. Topological relationship is present between quartz exsolution in omphacite and its host mineral which shows orientations of two long axes of quartz exsolution parallel to (100) and (-101) of omphacite. At present, some scholars suggest that thequartz exsolution in omphacite of eclogite is the evidence of UHP metamorphism. However, temperature and pressure condition and the exsolution mechanism of oriented needlelike quartz in omphacite still remain undear. Tnerefore, further study should be enhanced on experimental research on exsolution mechanism of super-silicate clinopyroxene, which could provide experimental quantitative constraint on quartz exsolution as UHP indicator.  相似文献   
28.
Abstract In the Su-Lu ultrahigh- P terrane, eastern China, many coesite-bearing eclogite pods and layers within biotite gneiss occur together with interlayered metasediments now represented by garnet-quartz-jadeite rock and kyanite quartzite. In addition to garnet + omphacite + rutile + coesite, other peak-stage minerals in some eclogites include kyanite, phengite, epidote, zoisite, talc, nyböite and high-Al titanite. The garnet-quartz-jadeite rock and kyanite quartzite contain jadeite + quartz + garnet + rutile ± zoisite ± apatite and quartz + kyanite + garnet + epidote + phengite + rutile ± omphacite assemblages, respectively. Coesite and quartz pseudomorphs after coesite occur as inclusions in garnet, omphacite, jadeite, kyanite and epidote from both eclogites and metasediments. Study of major elements indicates that the protolith of the garnet-quartz jadeite rock and the kyanite quartzite was supracrustal sediments. Most eclogites have basaltic composition; some have experienced variable 'crustal'contamination or metasomatism, and others may have had a basaltic tuff or pyroclastic rock protolith.
The Su-Lu ultrahigh- P rocks have been subjected to multi-stage recrystallization and exhibit a clockwise P-T path. Inclusion assemblages within garnet record a pre-eclogite epidote amphibolite facies metamorphic event. Ultrahigh- P peak metamorphism took place at 700–890° C and P >28 kbar at c . 210–230 Ma. The symplectitic assemblage plagioclase + hornblende ± epidote ± biotite + titanite implies amphibolite facies retrogressive metamorphism during exhumation at c . 180–200 Ma. Metasedimentary and metamafic lithologies have similar P-T paths. Several lines of evidence indicate that the supracrustal rocks were subducted to mantle depths and experienced in-situ ultrahigh- P metamorphism during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   
29.
从都兰北带榴辉岩的片麻岩围岩的锆石中发现了柯石英包裹体和石墨包裹体,说明该超高压带的峰期变质作用已达柯石英稳定区间(>2.8GPa)但小于金刚石的稳定区间(<3.5GPa),从而确定柴达木盆地北缘存在早古生代超高压变质作用和陆-陆碰撞作用,为中国中部存在一条横贯东西的早古生代(大致500-400Ma)高压超高压变质带的推断提供了新的关键性证据。  相似文献   
30.
新疆西南天山高压-超高压变质带主要由泥质-长英质片岩组成,其中包裹榴辉岩、蓝片岩和超基性岩等透镜体。含柯石英泥质片岩具斑状/筛状变晶结构,片状构造,矿物组合为石榴石、多硅白云母、钠长石、钠云母、蓝闪石、冻蓝闪石、石英以及少量褐帘石、金红石和榍石,柯石英包裹在石榴石变斑晶内。根据岩石学特征和相平衡模拟的结果,识别出含柯石英泥质片岩经历了3期变质演化阶段:压力峰期之前的进变质阶段(Ⅰ),由石榴石核部到含柯石英区域的环带确定,特征为温度和压力同时升高,所限定的压力峰期条件为500℃、2.9 GPa,模拟的矿物组合为石榴石+蓝闪石+硬玉+纤柱石+硬柱石+金红石+多硅白云母+柯石英,与含柯石英的事实相符;压力峰期之后的升温降压至温度峰期阶段(Ⅱ),由石榴石含柯石英区域到边部的环带确定,特征为温度升高压力降低,所限定的温度峰期条件为560℃、2.35 GPa,模拟的矿物组合为石榴石+蓝闪石+硬玉+硬柱石+金红石+多硅白云母+石英,发生连续脱水反应蓝闪石+纤柱石+硬柱石=石榴石+硬玉+水,释放出岩石中约45%的水,导致柯石英转变为石英,纤柱石消失;温度峰期之后的近等温降压阶段(Ⅲ),由晚期矿物组合钠云母+钠长石+冻蓝闪石+榍石+石英的稳定温压条件确定(495~550℃、1.0~1.15 GPa),减压抬升过程中,在约2.1 GPa处,发生脱水反应硬玉+硬柱石=蓝闪石+钠云母+水,导致硬柱石消失,钠云母出现,在约1.1~1.25 GPa处,榍石取代金红石,绿辉石消失,钠长石和冻蓝闪石出现。阶段Ⅱ强烈的连续脱水过程十分利于矿物组合的再平衡,导致绝大多数压力峰期的柯石英转变为石英,仅有极少数因包裹在刚性石榴石中而得以保存。含柯石英泥质片岩及其榴辉岩透镜体经历了完全相同的俯冲折返过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号