首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7909篇
  免费   1594篇
  国内免费   1805篇
测绘学   377篇
大气科学   3463篇
地球物理   1894篇
地质学   2226篇
海洋学   592篇
天文学   322篇
综合类   333篇
自然地理   2101篇
  2024年   43篇
  2023年   96篇
  2022年   238篇
  2021年   343篇
  2020年   383篇
  2019年   405篇
  2018年   362篇
  2017年   409篇
  2016年   422篇
  2015年   437篇
  2014年   526篇
  2013年   998篇
  2012年   539篇
  2011年   490篇
  2010年   478篇
  2009年   544篇
  2008年   586篇
  2007年   578篇
  2006年   497篇
  2005年   423篇
  2004年   379篇
  2003年   328篇
  2002年   288篇
  2001年   233篇
  2000年   219篇
  1999年   173篇
  1998年   162篇
  1997年   170篇
  1996年   116篇
  1995年   106篇
  1994年   85篇
  1993年   53篇
  1992年   47篇
  1991年   42篇
  1990年   26篇
  1989年   25篇
  1988年   19篇
  1987年   13篇
  1986年   14篇
  1985年   5篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1980年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
201.
The EPIC (Erosion Productivity Impact Calculator) crop model, developed by scientists of the United States Department of Agriculture (USDA), has been successfully applied to the study of erosion, water pollution, crop growth and production in the US but is yet to be introduced for serious research purposes in other countries or regions. This paper reports on the applicability of the EPIC 8120 crop model for the assessment of the potential impacts of climate variability and climate change on crop productivity in sub‐Saharan West Africa, using Nigeria as the case study. Among the crops whose productivity has been successfully simulated with this model are five of West Africa's staple food crops: maize, millet, sorghum (guinea corn), rice and cassava. Thus, using the model, the sensitivities of maize, sorghum and millet to seasonal rainfall were demonstrated with coefficients of correlation significant at over 98 per cent confidence limits. The validation tests were based on a comparison of the observed and the model‐generated yields of rice and maize. The main problems of validation relate to the multiplicity of crop varieties with contrasting performances under similar field conditions. There are also the difficulties in representing micro‐environments in the model. Thus, some gaps appear between the observed and the simulated yields, arising from data or model deficiencies, or both. Based on the results of the sensitivity and validation tests, the EPIC crop model could be satisfactorily employed in assessing the impacts of and adaptations to climate variability and climate change. Its use for the estimation of production and the assessment of vulnerabilities need to be pursued with further field surveys and field experimentation.  相似文献   
202.
Predictive vegetation modeling can be used statistically to relate the distribution of vegetation across a landscape as a function of important environmental variables. Often these models are developed without considering the spatial pattern that is inherent in biogeographical data, resulting from either biotic processes or missing or misspecified environmental variables. Including spatial dependence explicitly in a predictive model can be an efficient way to improve model accuracy with the available data. In this study, model residuals were interpolated and added to model predictions, and the resulting prediction accuracies were assessed. Adding kriged residuals improved model accuracy more often than adding simulated residuals, although some alliances showed no improvement or worse accuracy when residuals were added. In general, the prediction accuracies that were not increased by adding kriged residuals were either rare in the sample or had high nonspatial model accuracy. Regression interpolation methods can be an important addition to current tools used in predictive vegetation models as they allow observations that are predicted well by environmental variables to be left alone, while adjusting over‐ and underpredicted observations based on local factors.  相似文献   
203.
Yong Zha  Jay Gao  Ying Zhang 《Area》2005,37(3):332-340
Situated in a climatically stressful environment, alpine grassland is sensitive to subtle climate changes in its productivity. We remedy the current deficiency in studying grassland productivity by taking the integrated effect of all relevant factors into consideration. The relative importance of temperature, rainfall and evaporation to the alpine grassland productivity in western China was determined through analysis of their relationship with the normalized difference vegetation index (NDVI) between 1981 and 2000. Climate warming stimulated grassland productivity in the 1980s, but hampered it in the 1990s. Temperature is more important than rainfall to grassland productivity early in the growing season. However, their relative importance is reversed late in the growing season. Monthly summer month rainfall modified by maximum monthly temperature is a good predictor of alpine grassland productivity at 62.0 per cent. However, the best predictor is water deficiency, which is able to improve the estimation accuracy to 78.3 per cent. Hence, the impact of temperature on grassland productivity is better studied indirectly through evaporation.  相似文献   
204.
ABSTRACT. Two well dated Holocene sediment records bordering the Denmark Strait region have been used to reconstruct past climate variability. The content of biogenic silica, classic and organic material and moss in a lacustrine record from Lake N14 has been used to infer past variability in precipitation and temperature in southern Greenland. Sedimentologic and petrologic composition of sand in a shelf sediment record from the Djúpáll trough is used to infer past variability in the northwestern storm activity on northwestern Iceland, which probably also affected the inflow of polar waters from the East Greenland Current. Our evaluation of these records with a number of previous studies from the region documents Holocene climatic optimum conditions peaking between 8000 and 6500 calendar years before present (cal yr BP). Mid-Holocene climate deterioration set in around 5000 cal yr BP followed by a further marked setback around 3500 cal yr BP. A stacking of climate variability on a centennial timescale from previous studies in the area shows a fairly good correspondence to the timing of marked cold and warm events as evidenced from the Lake N14 and the Djúpáll trough records. Cooler periods are explained as the response to marked incursions of ice-laden polar water from the Arctic Ocean to the Denmark Strait region. Cool northerly and northwesterly winds along the East Greenland coast in relation to frequent strong atmospheric low pressure in the Barents Sea, coupled with strong high pressure over Greenland, would have favoured southward export of polar waters. A comparison with the proxy records of nuclide production (14C and 10Be) suggests that solar activity may have had some influence on the atmospheric pressure distribution in the Denmark Strait region.  相似文献   
205.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   
206.
One of the most cost-effective in situ technologies for soil and groundwater (i.e., aquifer) remediation is electrokinetic remediation. In electrokinetic remediation, electromigration due to electric field is combined with hydromigration due to hydraulic flow by purge water to remove pollutants from aquifers through the pore water. This study aims at investigating theoretically the role of electromigration (as active movement) of pollutants and the role of hydromigration (as passive movement) of pollutants in electrokinetic remediation, and making it clear that the control variables for electrokinetic remediation are the applied voltage and the hydraulic flow rate. These aims are pursued by construction of a mathematical model based on physico-chemical considerations and by model simulations of the electrokinetic remediation applied to the virtual aquifer polluted by heavy metals of copper sulfate. According to numerical simulations with the model: (1) heavy metal (nonanionic copper) is removed from the upstream anode region and accumulated in the downstream cathode region; (2) to carry away the heavy metal outside the aquifer (global removal), hydromigration by purge water flow is essential; and (3) electromigration contributes mainly to the redistribution of heavy metals within the aquifer (local removal and local accumulation).  相似文献   
207.
The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change.

During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This was the result of extensive phreatomagmatic activity along 3000 km of the opening northeast Atlantic rift. These widespread, predominantly basaltic ashes are now preserved in marine sediments of the Balder Formation and its equivalents, and occur over an area extending from the Faroe Islands to Denmark and southern England. These ash-bearing sediments also contain pollen and spore floras derived from low diversity forests that grew in cooler, drier climates than were experienced either before or after these highly explosive eruptions. In addition, coeval plant macrofossil evidence from the Bighorn Basin, Wyoming, USA, also shows a comparable pattern of vegetation change. The coincidence of the ashes and cooler climate pollen and spore floras in northwest Europe identifies volcanism as the primary cause of climate cooling. Estimates show that whilst relatively few phreatomagmatic eruptive centres along the 3000 km opening rift system could readily generate 0.5–1 °C cooling, on an annual basis, only persistent or repeated volcanic phases would have been able to achieve the long-term cooling effect observed in the floral record. We propose that the cumulative effect of repeated Balder Formation eruptions initiated a biodiversity crisis in the northeast Atlantic margin forests. Only the decline of this persistent volcanic activity, and the subsequent climatic warming at the start of the Eocene Thermal Maximum allowed the growth of subtropical forests to develop across the region.  相似文献   

208.
River flooding is a problem of international interest. In the past few years many countries suffered from severe floods. A large part of the Netherlands is below sea level and river levels. The Dutch flood defences along the river Rhine are designed for water levels with a probability of exceedance of 1/1250 per year. These water levels are computed with a hydrodynamic model using a deterministic bed level and a deterministic design discharge. Traditionally, the safety against flooding in the Netherlands is obtained by building and reinforcing dikes. Recently, a new policy was proposed to cope with increasing design discharges in the Rhine and Meuse rivers. This policy is known as the Room for the River (RfR) policy, in which a reduction of flood levels is achieved by measures creating space for the river, such as dike replacement, side channels and floodplain lowering. As compared with dike reinforcement, these measures may have a stronger impact on flow and sediment transport fields, probably leading to stronger morphological effects. As a result of the latter the flood conveyance capacity may decrease over time. An a priori judgement of safety against flooding on the basis of an increased conveyance capacity of the river can be quite misleading. Therefore, the determination of design water levels using a fixed-bed hydrodynamic model may not be justified and the use of a mobile-bed approach may be more appropriate. This problem is addressed in this paper, using a case study of the river Waal (one of the Rhine branches in the Netherlands). The morphological response of the river Waal to a flood protection measure (floodplain lowering in combination with summer levee removal) is analysed. The effect of this measure is subject to various sources of uncertainty. Monte Carlo simulations are applied to calculate the impact of uncertainties in the river discharge on the bed levels. The impact of the “uncertain” morphological response on design flood level predictions is analysed for three phenomena, viz. the impact of the spatial morphological variation over years, the impact of the seasonal morphological variation and the impact of the morphological variability around bifurcation points. The impact of seasonal morphological variations turns out to be negligible, but the other two phenomena appear to have each an appreciable impact (order of magnitude 0.05–0.1 m) on the computed design water levels. We have to note however, that other sources of uncertainty (e.g. uncertainty in hydraulic roughness predictor), which may be of influence, are not taken into consideration. In fact, the present investigation is limited to the sensitivity of the design water levels to uncertainties in the predicted bed level.  相似文献   
209.
IPCC reports provide a synthesis of the state of the science in order to inform the international policy process. This task is made difficult by the presence of deep uncertainty in the climate problem that results from long time scales and complexity. This paper focuses on how deep uncertainty can be effectively communicated. We argue that existing schemes do an inadequate job of communicating deep uncertainty and propose a simple approach that distinguishes between various levels of subjective understanding in a systematic manner. We illustrate our approach with two examples. To cite this article: M. Kandlikar et al., C. R. Geoscience 337 (2005).  相似文献   
210.
思茅境内澜沧江径流变化量与云南气候变化的关系   总被引:2,自引:1,他引:2  
以思茅澜沧江流域下游思茅境内水文站1960年1月~2001年12月的逐月径流量和云南的月雨量(气温)场格点资料为基础,用相关分析的方法,研究了思茅境内澜沧江流域的东西部径流量变化及其与云南气候变化的关系。结论为:思茅境内澜沧江下游流域的径流量变化与滇西南的降水量变化有显著的相关关系,其季节特征为春夏季较好,秋冬季次之;与元江河谷一带的气温变化也有显著的反相关关系,其中西部流域还与滇南的气温变化有显著的相关关系,其季节特征则为冬春季较好,夏秋季不显著。20世纪80年代以来,该流域的气温变化呈上升趋势,且西部升温的上升趋势更显著,气温上升对径流量的变化起减小的作用;20世纪90年代以来,该流域的东西部降水量变化出现了显著的差异,其东部的降水量明显增多,与此相一致,其东部径流量变化的增幅也明显大于其西部。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号