首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   15篇
  国内免费   34篇
地球物理   17篇
地质学   116篇
海洋学   2篇
综合类   1篇
自然地理   2篇
  2024年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   2篇
  2012年   5篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   10篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
11.
尖晶石是地幔橄榄岩中一种非常重要的矿物,虽然含量很低,却可以作为其寄主岩石——地幔橄榄岩——的成因指示剂.普兰岩体东部铬尖晶石分布广泛,几乎在所有岩石类型中都有出现.通过矿物学特征的研究,认为尖晶石可分为两类,一类较自形,颜色较深;另一类多呈不规则状和蠕虫状,颜色较浅.根据其化学特征,又可分为富铬型的尖晶石(Cr#>60)和富铝型的尖晶石(Cr#<60),富铬型尖晶石主要出现在纯橄岩、蛇纹岩和辉石岩中,富铝型尖晶石主要出现在二辉橄榄岩中.其中,方辉橄榄岩中的尖晶石形态、化学成分变化比较大,说明它经历了较为复杂的形成和变化过程.通过对尖晶石矿物学和化学特征的综合研究,认为该区尖晶石具有深海橄榄岩和上部俯冲板片(SSZ)构造环境橄榄岩特征,普兰岩体可能先后经历了MOR和SSZ两种构造环境.  相似文献   
12.
The Sindong Group was deposited in the north–south trending half‐graben Nakdong Trough, southern Korean peninsula. The occurrence of detrital chromian spinels from the Jinju Formation of the Sindong Group in the Gyeongsang Basin means that the mafic to ultramafic rocks were exposed in its provenance. The chromian spinels from the Jinju Formation are characterized by extremely low TiO2 and Fe3+. Moreover, their range of Cr# is from 0.45 to 0.80 and makes a single trend with Mg#. The chemistry of chromian spinels implies that the source rocks for chromian spinels were peridotites or serpentinites, which originated in the mantle wedge. To more narrowly constrain their source rocks, the Ulsan and Andong serpentinites exposed in the Gyeongsang Basin were examined petrographically. Chromian spinels in the Andong serpentinite differ from those of the Jinju Formation and those in the Ulsan serpentinite partly resemble them. Furthermore, the Jinju chromian spinel suite is similar to the detrital chromian spinels from the Mesozoic sediments in the Circum‐Hida Tectonic zone, which includes the Nagato Tectonic zone in Southwest Japan and the Joetsu Belt in Northeast Japan. This suggests that the basement rocks, which were located along the main fault bounding the eastern edge of the Nakdong Trough, had exposures of peridotite or serpentinite. It is possible that the Nakdong Trough was directly adjacent to the Circum‐Hida Tectonic zone before the opening of the Sea of Japan (East Sea).  相似文献   
13.
14.
上扬子会泽地区早三叠世飞仙关组主要为河流相的紫红色砂岩,物源主要来自于西部和西北部。碎屑重矿物组合表明物源主要来自于岩浆岩,且重矿物中发现大量碎屑铬尖晶石和锆石。本文运用电子探针微区成分分析和碎屑锆石U-Pb测年方法,对上扬子早三叠世飞仙关组砂岩中铬尖晶石和碎屑锆石进行分析。铬尖晶石电子探针化学成分分析显示,其具有高铬、低Fe~(3+)和高TiO_2含量的特征,源岩分析指示这些铬尖晶石来源于与洋岛/板内、岛弧以及大火成岩省相关的火成岩。同时,碎屑锆石LA-ICP-MS U-Pb年龄测定表明,飞仙关组的物源主要来自于248~272Ma和715~997Ma的岩浆岩。铬尖晶石和碎屑锆石综合分析表明,248~272Ma的物源岩石具有大火成岩省玄武岩特征,主要为峨眉山玄武岩及同期基性侵入岩;715~997M的物源为洋岛/板内玄武岩类,主要为研究区周缘与新元古代苏雄组及其同期的岩浆岩;铬尖晶石指示的岛弧性质物源则可能源自1000~1100Ma的岩浆岩。同时,碎屑锆石还指示古元古代和早寒武世发育岩浆作用,且存在古老的新太古代结晶基底。这些资料为上扬子地区构造演化提供了沉积学的证据。  相似文献   
15.
第一原理计算过渡金属掺杂尖晶石型LiMn2O4的电子结构   总被引:1,自引:0,他引:1  
尽管对过渡金属掺杂锰酸锂后放电平台的升高现象有众多实验研究,但对其机理的研究却鲜见报道.采用第一原理的密度泛函理论,计算了过渡金属M(M=Ti、Cr、Fe、Co、Ni、Cu、Zn)掺杂尖晶石型LiMn2O4的电子结构,并以此分析放电平台的升高机理.电子态密度分析发现由于M-3d能带的诱导作用,出现了新的O-2p能带,而锂脱出时获得的电子,主要是由费米能级附近O-2p能带提供的.当过渡金属M由Ti变化到Zn时,M-3d能带逐渐向低能量的方向移动,新的O-2p能带出现的位置也随之下移,当Li脱出时,需要更多的能量才能从低能量的O-2p能带上获得电子,因而体系能够获得较高的嵌入电压.  相似文献   
16.
Conventional diamond exploration seldom searches directly for diamonds in rock and soil samples. Instead, it focuses on the search for indicator minerals like chrome spinel, which can be used to evaluate diamond potential. Chrome spinels are preserved as pristine minerals in the early Paleozoic (∼465 Ma), hydrothermally altered, Group I No. 30 pipe kimberlite that intruded the Neoproterozoic Qingbaikou strata in Wafangdian, North China Craton (NCC). The characteristics of the chrome spinels were investigated by petrographic observation (BSE imaging), quantitative chemical analysis (EPMA), and Raman spectral analysis. The results show that the chrome spinels are mostly sub-rounded with extremely few grains being subhedral, and these spinels are macrocrystic, more than 500 µm in size. The chrome spinels also have compositional zones: the cores are classified as magnesiochromite as they have distinctly chromium-rich (Cr2O3 up to 66.56 wt%) and titanium-poor (TiO2 < 1 wt%) compositions; and the rims are classified as magnetite as they have chromium-poor and iron-rich composition. In the cores of chrome spinels, compositional variations are controlled by Al3+-Cr3+ isomorphism, which results in a strong Raman spectra peak (A1g mode) varying from 690 cm−1 to 702.9 cm−1. In the rims of chrome spinel, compositional variations result in the A1g peak varying from 660 cm−1 to 672 cm−1. The morphology and chemical compositions indicate that the chrome spinels are mantle xenocrysts. The cores of the spinel are remnants of primary mantle xenocrysts that have been resorbed, and the rims were formed during kimberlite magmatism. The compositions of the cores are used to evaluate the diamond potential of this kimberlite through comparison with the compositions of chrome spinels from the Changmazhuang and No. 50 pipe kimberlites in the NCC. In MgO, Al2O3 and TiO2 versus Cr2O3 plots, the chrome spinels from the Changmazhuang and No. 50 pipe kimberlites are mostly located in the diamond stability field. However, only a small proportion of chrome spinels from No. 30 pipe kimberlite have same behavior, which indicates that the diamond potential of the former two kimberlites is greater than that of the No. 30 pipe kimberlite. This is also supported by compositional zones in the spinel grains: there is with an increase in Fe3+ in the rims, which suggests that the chrome spinels experienced highly oxidizing conditions. Oxidizing conditions may have been imparted by fluids/melts that have a great influence on diamond destruction. Here, we suggest that chrome spinel compositions can be a useful tool for identifying the target for diamond potential in the North China Craton.  相似文献   
17.
李一良  王峥嵘 《地球化学》1998,27(5):442-451
根据激光探针分析含尖晶石橄榄石中矿物的氧同位素组成,反应增量法计算矿物对氧同位素分馏曲线,得到正尖晶石-矿物对氧同位素温度高于含尖晶石橄榄岩的相平衡温度,而用反尖晶石-矿物的对计算的氧同位素温度则很接近含尖晶石橄榄岩的相平衡温度,较为合理,因此地幔橄榄岩中镁铝尖晶石的氧同位素组成继承了其母体反尖晶石特征,即与橄榄石,单斜辉石和斜方辉石平衡的是反结构尖晶石,在其发生相变作用变成正结构尖晶石时未发生氧  相似文献   
18.
Peridotites exposed in the Yugu area in the Gyeonggi Massif, South Korea, near the boundary with the Okcheon Belt, exhibit mylonitic to strongly porphyroclastic textures, and are mostly spinel lherzolites. Subordinate dunites, harzburgites, and websterites are associated with the lherzolites. Amphiboles, often zoned from hornblende in the core to tremolite in the rim, are found only as neoblasts. Porphyroclasts have recorded equilibrium temperatures of about 1000°C, whereas neoblasts denote lower temperatures, about 800°C. Olivines are Fo90–91 in lherzolites and Fo91 in a dunite and a harzburgite. The Cr# (= Cr/(Cr + Al) atomic ratio) of spinels varies together with the Fo of olivines, being from 0.1 to 0.3 in lherzolites and around 0.5 in the dunite and harzburgite. The Na2O content of clinopyroxene porphyroclasts is relatively low, around 0.3 to 0.5 wt% in the most fertile lherzolite. The Yugu peridotites are similar in porphyroclast mineral chemistry not to continental spinel peridotites but to sub‐arc or abyssal peridotites. Textural and mineralogical characteristics indicate the successive cooling with hydration from the upper mantle to crustal conditions for the Yugu peridotites. Almost all clinopyroxenes and amphiboles show the same U‐shaped rare earth element (REE) patterns although the level is up to ten times higher for the latter. The hydration was associated with enrichment in light REE, resulting from either a slab‐derived fluid or a fluid circulating in the crust. The mantle‐wedge or abyssal peridotites were emplaced into the continental crust as the Yugu peridotite body during collision of continents to form a high‐pressure metamorphic belt in the Gyeonggi Massif. The peridotites from the Gyeonggi Massif exhibit lower‐pressure equilibration than peridotites, with or without garnets, from the Dabie–Sulu Collision Belt, China, which is possibly a westward extension of the Gyeonggi Massif.  相似文献   
19.
I~IOXThe Okinawa Trough is an extending back--arc basin between the East China Sea Shelf andthe Ry'Ukyu Island Arc of Japan. There are widespreadly distributing acid pumice in the troughand a little basalt just in some area of the extending center. There have been some detailed rePOrtsabout the mineralogy and petrochemical feature of the subalkali tholeiite and alkali trachyte in thetrough (Zhai and Gan, 1995; Li et al., 1997; Qin and Zhai, 1988). This paper mainly reportselectron mic…  相似文献   
20.
The distribution of platinum-group elements (PGEs), together with spinel composition, of podiform chromitites and serpentinized peridotites were examined to elucidate the nature of the upper mantle of the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. The mantle section is dominated by harzburgite with less abundant dunite. Chromitite pods are also found as small lenses not exceeding a few meters in size. Almost all primary silicates have been altered, and chromian spinel is the only primary mineral that survived alteration. Chromian spinel of chromitites is less affected by hydrothermal alteration than that of mantle peridotites. All chromitite samples of the Bou Azzer ophiolite display a steep negative slope of PGE spidergrams, being enriched in Os, Ir and Ru, and extremely depleted in Pt and Pd. Harzburgites and dunites usually have intermediate to low PGE contents showing more or less unfractionated PGE patterns with conspicuous positive anomalies of Ru and Rh. Two types of magnetite veins in serpentinized peridotite, type I (fibrous) and type II (octahedral), have relatively low PGE contents, displaying a generally positive slope from Os to Pd in the former type, and positive slope from Os to Rh then negative from Rh to Pd in the latter type. These magnetite patterns demonstrate their early and late hydrothermal origin, respectively. Chromian spinel composition of chromitites, dunites and harzburgites reflects their highly depleted nature with little variations; the Cr# is, on average, 0.71, 0.68 and 0.71, respectively. The TiO2 content is extremely low in chromian spinels, <0.10, of all rock types. The strong PGE fractionation of podiform chromitites and the high-Cr, low-Ti character of spinel of all rock types imply that the chromitites of the Bou Azzer ophiolite were formed either from a high-degree partial melting of primitive mantle, or from melting of already depleted mantle peridotites. This kind of melting is most easily accomplished in the supra-subduction zone environment, indicating a genetic link with supra-subduction zone magma, such as high-Mg andesite or arc tholeiite. This is a general feature in the Neoproterozoic upper mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号