首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3213篇
  免费   362篇
  国内免费   300篇
测绘学   296篇
大气科学   314篇
地球物理   1313篇
地质学   809篇
海洋学   360篇
天文学   110篇
综合类   81篇
自然地理   592篇
  2024年   17篇
  2023年   22篇
  2022年   37篇
  2021年   121篇
  2020年   124篇
  2019年   98篇
  2018年   86篇
  2017年   135篇
  2016年   130篇
  2015年   131篇
  2014年   154篇
  2013年   307篇
  2012年   107篇
  2011年   132篇
  2010年   84篇
  2009年   141篇
  2008年   198篇
  2007年   213篇
  2006年   163篇
  2005年   179篇
  2004年   128篇
  2003年   131篇
  2002年   121篇
  2001年   93篇
  2000年   110篇
  1999年   91篇
  1998年   76篇
  1997年   93篇
  1996年   62篇
  1995年   48篇
  1994年   38篇
  1993年   49篇
  1992年   39篇
  1991年   27篇
  1990年   30篇
  1989年   25篇
  1988年   29篇
  1987年   21篇
  1986年   18篇
  1985年   19篇
  1984年   9篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1971年   1篇
  1954年   1篇
排序方式: 共有3875条查询结果,搜索用时 31 毫秒
121.
122.
123.
The conventional interpretation methods of pressuremeter testing effectively approximate pressuremeter membranes as infinitely long. As a result, the effects of the two‐dimensional geometry of pressuremeters are ignored, leading to an overestimation of soil shear strength by pressuremeter testing, as demonstrated in several previous studies. This paper presents results of a numerical study of two‐dimensional geometry effects on self‐boring pressuremeter tests in undrained clay. The results are obtained using critical state soil models with an effective stress formulation. This is in contrast to most (if not all) existing studies on pressuremeter geometry effects, which were based on perfectly plastic soil models (e.g. Yu (Cavity expansion theory and its application to the analysis of pressuremeters. DPhil Thesis, The University of Oxford, 1990), Yeung and Carter (Proc. 3rd Int. Symp. on Pressuremeters, 1990), and Houlsby and Carter (Géotechnique, 1993; 43 (4):567–576)). The present study suggests that the overestimation of soil strength due to the neglect of finite pressuremeter length is significantly affected by the soil model used in the calculations. It is found that for clays with a high overconsolidation ratio (OCR) the strength overestimation predicted using critical state soil models could be considerably smaller than that predicted using perfectly plastic soil models. The main conclusion of this numerical study is that care must be exercised before directly applying any numerically determined pressuremeter geometry correction factors in practice. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
124.
The major obstacles for modelling flood processes in karst areas are a lack of understanding and model representations of the distinctive features and processes associated with runoff generation and often a paucity of field data. In this study, a distributed flood-modelling approach, WetSpa, is modified and applied to simulate the hydrological features and processes in the karst Suoimuoi catchment in northwest Vietnam. With input of topography, land use and soil types in a GIS format, the model is calibrated based on 15 months of hourly meteorological and hydrological data, and is used to simulate both fast surface and conduit flows, and groundwater discharges from karst and non-karst aquifers. Considerable variability in the simulation accuracy is found among storm events and within the catchment. The simulation results show that the model is able to represent reasonably well the stormflows generated by rainfall events in the study catchment.  相似文献   
125.
This paper presents streambed hydraulic conductivities of the Platte River from south-central to eastern Nebraska. The hydraulic conductivities were determined from river channels using permeameter tests. The vertical hydraulic conductivities (K v ) from seven test sites along this river in south-central Nebraska belong to one statistical population. Its mean value is 40.2 m/d. However, the vertical hydraulic conductivities along four transects of the Ashland test site in eastern Nebraska have lower mean values, are statistically different from the K v values in south-central Nebraska, and belong to two different populations with mean values of 20.7 and 9.1 m/d, respectively. Finer sediments carried from the Loup River and Elkhorn River watersheds to the eastern reach of the Platte River lowers the vertical hydraulic conductivity of the streambed. Correlation coefficients between water depth and K v values along a test transect indicates a positive correlation – a larger K v usually occurs in the part of channel with deeper water. Experimental variograms derived from the vertical hydraulic conductivities for several transects across the channels of the Platte River show periodicity of spatial correlation, which likely result from periodic variation of water depth across the channels. The sandy to gravelly streambed contains very local silt and clay layers; spatially continuous low-permeability streambed was not observed in the river channels. The horizontal hydraulic conductivities were larger than the vertical hydraulic conductivities for the same test locations.  相似文献   
126.
Thermal impact of typical high‐density residential, industrial, and commercial land uses is a major concern for the health of aquatic life in urban watersheds, especially in smaller, cold, and cool‐water streams. This is the first study of its kind that provides simple easy‐to‐use equations, developed using gene expression programming (GEP) that can guide the assessment and the design of urban stormwater management systems to protect thermally sensitive receiving streams. We developed 3 GEP models using data collected during 3 years (2009–2011) from 4 urban catchments; the first GEP model predicts event mean temperature at the inlet of the pond; the second model predicts the stormwater temperature at the outlet of the pond; and the third model predicts the temperature of the stormwater after flowing through a cooling trench and before discharging to the receiving stream. The new models have high correlation coefficients of 0.90–0.94 and low prediction uncertainty of less than 4% of the median value of the predicted runoff temperatures. Sensitivity analysis shows that climatic factors have the highest influence on the thermal enrichment followed by the catchment characteristics and the key design variables of the stormwater pond and the cooling trench. The general method presented here is easily transferable to other regions of the world (but not necessarily the exact equations developed here); also through sensitivity and parametric analysis, we gained insight on the key factors and their relative importance in modelling thermal enrichment of urban stromwater runoff.  相似文献   
127.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   
128.
Some conceptual models suggest that baseflow in agriculturally fragmented watersheds may contain little, if any, groundwater. This has critical implications for stream quality and ecosystem functioning. Here, we (a) identify the sources and flowpaths contributing to baseflow using 222Rn and 87Sr/86Sr and (b) quantify mean apparent ages of groundwater and baseflow using multiple isotopic tracers (CFC, SF6, 36Cl, and 3H) in 4 small (0.08 to 0.64 km2) tributary catchments to the Wabash River in Indiana, USA. 222Rn activities and 87Sr/86Sr ratios indicate that baseflow in 3 catchments is sourced primarily from groundwater; baseflow in the fourth is dominated by a source similar to agricultural run‐off. CFC‐12 data indicate that springs in 1 catchment are discharging significant proportions of water that recharged between 1974 (42 ± 2 years) and 1961 (55 ± 2 years). Those same springs have 36Cl/Cl ratios between 1,381.08 ± 29.37 (×10?15) and 1,530.64 ± 27.65 (×10?15) indicating that a substantial proportion of the discharge likely recharged between 1975 (41 years) and 1950 (66 years). Groundwater samples collected from streambed mini‐piezometers in a separate catchment have CFC‐12 concentrations indicating that a large proportion of the recharge occurred between 1948 (68 ± 2 years) and 1950 (66 ± 2 years). Repeat sampling conducted in September 2015 after above‐average summer rainfall did not show significant decreases in mean apparent age. The relatively old ages observed in 3 of the catchments can be explained by geological complexities that are likely present in all 4 catchments, but overwhelmed by flow from the shallow phreatic aquifer in the fourth catchment.  相似文献   
129.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
130.
Ressi is a small (2.4 ha) forested catchment located in the Italian pre-Alps. The site became an experimental catchment to investigate the water fluxes in the soil–plant–atmosphere continuum and the impact of vegetation on runoff generation in 2012. The elevation of the catchment ranges from 598 to 721 m a.s.l. and the climate is humid temperate. The bedrock consists of rhyolites and dacites; the soil is a Cambisol. The catchment is covered by a dense forest, dominated by beech, chestnut, maple, and hazel trees. The field set up includes measurements of the rainfall in an open area, streamflow at the outlet, soil moisture at various depths and locations, and depth to water table in six piezometers at a 5- or 10-min interval. Samples of precipitation, stream water, shallow groundwater and soil water are collected monthly for tracer analysis (stable isotopes (2H and 18O), electrical conductivity and major ions), and during selected rainfall–runoff events to determine the contribution of the various sources to runoff. Since 2017, soil and plant water samples have been collected to determine the sources of tree transpiration. Data collected in the period 2012–2016 are publicly available. Data collection is ongoing, and the data set is expected to be updated on an annual basis to include the most recent measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号