首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1124篇
  免费   104篇
  国内免费   187篇
测绘学   61篇
大气科学   76篇
地球物理   226篇
地质学   290篇
海洋学   485篇
天文学   104篇
综合类   68篇
自然地理   105篇
  2024年   1篇
  2023年   16篇
  2022年   34篇
  2021年   30篇
  2020年   29篇
  2019年   28篇
  2018年   23篇
  2017年   35篇
  2016年   32篇
  2015年   29篇
  2014年   51篇
  2013年   63篇
  2012年   46篇
  2011年   72篇
  2010年   63篇
  2009年   78篇
  2008年   82篇
  2007年   57篇
  2006年   78篇
  2005年   59篇
  2004年   56篇
  2003年   43篇
  2002年   48篇
  2001年   48篇
  2000年   37篇
  1999年   49篇
  1998年   59篇
  1997年   23篇
  1996年   38篇
  1995年   22篇
  1994年   13篇
  1993年   7篇
  1992年   14篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   11篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
排序方式: 共有1415条查询结果,搜索用时 15 毫秒
91.
为研究棱梭不同地理群体间的形态差异,使用多元统计分析方法对采集自金门、厦门、虎门、湛江、北海和防城港6个地点邻近海域的棱梭群体样本的形态和矢耳石形态两方面进行比较研究。对棱梭样本的形态研究结合传统形态学和地标形态学开展,对矢耳石的形态研究则将传统耳石形态分析法和椭圆傅里叶分析法相结合,形态和耳石形态数据的分析结果相似。主成分分析结果表明从28个棱梭形态量度指标提取的前8个主成分累积贡献率为65. 868%,从85个耳石形态指标提取的前23个主成分的累积贡献率为79. 290%,根据临界值85. 000%可以推断这6个棱梭群体间形态和耳石形态上的差异不能够单独依靠少数指标来判断;聚类分析的结果总体显示出群体间差异与地理距离等因素相关联的分布规律;在判别分析中形态学量度指标的综合判别正确率为75. 9%,而耳石形态学指标的综合判别正确率略低,为69. 3%;对棱梭形态量度指标的单因子方差分析显示湛江棱梭群体与其他群体在形态上存在显著差异的量度指标较少。栖息地环境、饵料组成和海流等可能是导致形态学差异和耳石形态差异形成的主要因素。另一方面,理化因子的相似性和群体间的交流会减弱群体间形态和耳石形态的差异。  相似文献   
92.
中国近海藻毒素及有毒微藻产毒原因种调查研究进展   总被引:2,自引:0,他引:2  
麻痹性贝类毒素在我国近海污染问题已十分突出,基本呈现逐年加剧的趋势。20世纪90年代,南海麻痹性贝类毒素污染较重; 21世纪初,北黄海麻痹性贝类毒素污染较重;近几年,渤海和福建近海麻痹性贝类毒素污染较重;可产生麻痹性贝类毒素的微藻有亚历山大藻和裸甲藻等。采用小鼠生物法检测我国近海腹泻性贝类毒素超标率32%左右,采用液相色谱/质谱法检测,仅有3起超标的研究报道;现行小鼠生物法检测腹泻性贝类毒素假阳性问题十分突出,应尽快废除;腹泻性贝类毒素均是脂溶性的,脂溶性海洋生物毒素在我国近海常年可检出,偶有虾夷扇贝毒素和鳍藻毒素超标现象。可产生脂溶性毒素微藻有鳍藻和原甲藻及网状原角藻等。失忆性贝类毒素在我国近海常有检出,但无超标现象;产毒微藻有拟菱形藻等。西加鱼毒素在我国南海污染较重,但毒素标准物质的匮乏,限制了西加鱼毒素的调查研究;至今尚未确定产生西加鱼毒素的微藻。酶联免疫吸附法和液相色谱串联质谱法相结合已成为藻毒素快速准确检测成熟的技术,逐渐代替小鼠生物法和液相色谱法。  相似文献   
93.
Achieving a reliable and accurate numerical prediction of the self-propulsion performance of a ship is still an open problem that poses some relevant issues. Several CFD methods, ranging from boundary element methods (BEM) to higher-fidelity viscous Reynolds averaged Navier–Stokes (RANS) based solvers, can be used to accurately analyze the separate problems, i.e. the open water propeller and the hull calm water resistance. However, when the fully-coupled self-propulsion problem is considered, i.e. the hull advancing at uniform speed propelled by its own propulsion system, several complexities rise up. Typical flow simplifications adopted to speed-up the simulations of the single analysis (hull and propeller separately) lose their validity requiring a more complex solver to tackle the fully-coupled problem. The complexity rises up further when considering a maneuver condition. This aspect increases the computational burden and, consequently, the required time which becomes prohibitive in a preliminary ship design stage.The majority of the simplified methods proposed in literature to include propeller effects, without directly solve the propeller flow, in a high-fidelity viscous solver are not able to provide all the commonly required self-propulsion coefficients. In this work, a new method to enrich the results from a body force based approach is proposed and investigated, with the aim to reduce as much as possible the computational burden without losing any useful result. This procedure is tested for validation on the KCS hull form in self-propulsion and maneuver conditions.  相似文献   
94.
Seasonal and inter-annual patterns of macroalgal abundance in a Tagus Estuary oyster reef are described. Macroalgal abundance was estimated as canopy percent cover by three permanent point intercept transects over a 7-year period. Four categories were defined, corresponding to bare substrate and three different macroalgal functional-form groups: (1) ULVA, foliose group, included Ulva spp.; (2) GRACIL, terete corticated macrophyte group, included only Gracilaria gracilis; and (3) FILAM, small (<10 cm) filamentous group, including eight species. A canonical correspondence analysis (CCA) showed that: (1) ULVA were associated with long and hot days, being usually dominant during spring and especially summer; (2) FILAM were associated with mild temperatures and relatively long days, abundant in spring but showed frequent peaks in summer; and (3) GRACIL were also favoured by spring season, although associated to lower temperature and less daylight hours than FILAM. GRACIL and FILAM were present throughout the year. On the contrary, ULVA were absent or with low cover during colder periods. A negative correlation between GRACIL and FILAM seems to indicate competition between the two categories. The applied models explained 23.3% of the temporal variance in category abundance. Rainfall negatively affected macroalgal cover, as indicated by the positive correlation between rainfall and bare substrate. Our conclusions are in agreement with previous studies that consider algae as excellent environmental integrators, even on a small scale, due to a strong link between the macroalgal communities and relevant environmental variables. It is also relevant that this study used open-access databases of environmental variables, which open up new possibilities for mining existing data resources in new ways. Due to large inter-annual variability, long-term studies are essential to understand population dynamics in estuarine phytobenthic communities.  相似文献   
95.
The Water Framework and Habitats Directives require the evaluation of both the conservation and ecological status of macroalgae communities at water body or habitat level. However, assessments of macroalgal communities are highly time-consuming, both in terms of sampling effort and laboratory processing. These constraints have brought about their oversight in many marine monitoring programs, especially in subtidal environments. By using data from intertidal and subtidal macroalgae assemblages of Mouro Island (North coast of Spain) we wanted to identify possible cost-effective methods for monitoring this biological indicator, based on both high taxa levels and use of representative taxa. Multivariate analyses were applied using different data transformations. The results show that macroalgal communities are robust to aggregation to genus or even family level. Moreover, the outcomes show that transformation types introduce higher variation in the multivariate pattern of samples than the taxonomic level to which organisms are identified. Also, the study supports the use of representative taxa as a surrogate to overall community structure. Therefore, we conclude that a rapid-assessment by means of field evaluations, based on coverage of representative taxa, is a reliable alternative for the assessment of macroalgae status. In addition this procedure allows evaluation at a broader spatial scale (water body or habitat level) than traditional quantitative sampling procedure does.  相似文献   
96.
Temporal changes in nitrogen isotopic composition (δ15N) of the NO3 pool in the water column below the pycnocline in Ise Bay, Japan were investigated to evaluate the effect of nitrification on the change in the δ15N in the water column. The δ15N of NO3 in the lower layers varied from −8.5‰ in May to +8.4‰ in July in response to the development of seasonal hypoxia and conversion from NH4 + to NO3 . The significantly 15N-depleted NO3 in May most likely arose from nitrification in the water column. The calculated apparent isotopic discrimination for water column nitrification (ɛnit = δ15Nsubstrate − δ15Nproduct) was 24.5‰, which lies within the range of previous laboratory-based estimates. Though prominent deficits of NO3 from hypoxic bottom waters due to denitrification were revealed in July, the isotopic discrimination of denitrification in the sediments was low (ɛdenit = ∼1‰). δ15NNO3 in the hypoxic lower layer mainly reflects the isotopic effect of water column nitrification, given that water column nitrification is not directly linked with sedimentary denitrification and the effect of sedimentary denitrification on the change in δ15NNO3 is relatively small.  相似文献   
97.
We report measurements of dissolved iron (dFe, <0.4 μm) in seawater collected from the upper 300 m of the water column along the CLIVAR SR3 section south of Tasmania in March 1998 (between 42°S and 54°S) and November–December 2001 (between 47°S and 66°S). Results from both cruises indicate a general north-to-south decrease in mixed-layer dFe concentrations, from values as high as 0.76 nM in the Subtropical Front to uniformly low concentrations (<0.1 nM) between the Polar Front and the Antarctic continental shelf. Samples collected from the seasonal sea-ice zone in November–December 2001 provide no evidence of significant dFe inputs from the melting pack ice, which may explain the absence of pronounced ice-edge algal blooms in this sector of the Southern Ocean, as implied by satellite ocean-color images. Our data also allow us to infer changes in the dFe concentration of surface waters during the growing season. South of the Polar Front, a comparison of near-surface with subsurface (150 m depth) dFe concentrations in November–December 2001 suggests a net seasonal biological uptake of at least 0.14–0.18 nM dFe, of which 0.05–0.12 nM is depleted early in the growing season (before mid December). A comparison of our spring 2001 and fall 1998 data indicates a barely discernible seasonal depletion of dFe (0.03 nM) within the Polar Frontal Zone. Further north, most of our iron profiles do not exhibit near-surface depletions, and mixed-layer dFe concentrations are sometimes higher in samples from fall 1998 compared to spring 2001; here, the near-surface dFe distributions appear to be dominated by time-varying inputs of aerosol iron or advection of iron-rich subtropical waters from the north.  相似文献   
98.
The variability and origin of the Coloured Dissolved Organic Matter (CDOM) were studied in the Belgian coastal and adjacent areas including offshore waters and the Scheldt estuary, through the parameters: absorption at 375 nm, aCDOM(375), and the slope of the absorption curve, S. aCDOM(375) varied between 0.20 and 1.31 m−1 and between 0.97 and 4.30 m−1 in the marine area and Scheldt estuary, respectively. S fluctuated between 0.0101 and 0.0203 nm−1 in the marine area and between 0.0167 and 0.0191 nm−1 in the Scheldt estuary. The comparative analysis of aCDOM(375) and S variations evidenced different origins of CDOM in the BCZ. The Scheldt estuarine waters showed decreasing aCDOM(375) values with increasing salinity but constant S value of ∼0.018 nm−1 suggesting a dominant terrestrial origin of CDOM. On the contrary, samples collected in the marine domain showed a narrow range of aCDOM(375) but highly variable S suggesting the additional presence of autochthonous sources of CDOM. This source was evidenced based on the sorting of the marine offshore data according to the stage of the phytoplankton bloom when they were collected. A clear distinction was made between CDOM released during the growth stage characterized by high S (∼0.017 nm−1) and low aCDOM(375) and the decay phase characterized by low S (∼0.013 nm−1) and high aCDOM(375). This observation was supported by CDOM measurements performed on pure phytoplankton cultures which showed increased CDOM release along the wax and wane of the bloom but decreasing S. We concluded that the high variability of the CDOM signature in offshore waters is explained by the local biological production and processing of CDOM.  相似文献   
99.
Nine species of Prionospio complex are recorded from China’s waters, including one new species and six newly recorded species. Prionospio (Prionospio) pacifica sp. nov., is characterized by having first and forth pairs of branchiae pinnate, second and third pairs of apinnate, ventral crest on Setiger 9 and dorsal crests on Setigers 10—25. Apoprionospio kirrae (Wilson, 1990), Prionospio (Aquilaspio) convexa Imajima, 1990, Prionospio (Minuspio) multibranchiata Berkeley, 1927, Prionospio (Prionospio) bocki Sderstrm, 1920, Prionospio (Prionospio) dubia Maciolek, 1985 and Prionospio (Prionospio) paradisea Imajima, 1990 are recorded for the first time from China’s waters.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号