首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   2篇
  国内免费   13篇
地球物理   59篇
地质学   48篇
海洋学   2篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   24篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   9篇
  2001年   5篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有115条查询结果,搜索用时 218 毫秒
21.
 A discontinuous pumiceous sand, a few centimeters to tens of centimeters thick, is located up to 15 m above mean high tide within Holocene peat along the northern Bristol Bay coastline of Alaska. The bed consists of fine-to-coarse, poorly to moderately well-sorted, pumice-bearing sand near the top of a 2-m-thick peat sequence. The sand bed contains rip-up clasts of peat and tephra and is unique in the peat sequence. Major element compositions of juvenile glass from the deposit and radiocarbon dating of enclosing peat support correlation of the pumiceous sand with the caldera-forming eruption of Aniakchak Volcano. The distribution of the sand and its sedimentary characteristics are consistent with emplacement by tsunami. The pumiceous sand most likely represents redeposition by tsunami of climactic fallout tephra and beach sand during the approximately 3.5 ka Aniakchak caldera-forming eruption on the Alaska Peninsula. We propose that a tsunami was generated by the sudden entrance of a rapidly moving, voluminous pyroclastic flow from Aniakchak into Bristol Bay. A seismic trigger for the tsunami is unlikely, because tectonic structures suitable for tsunami generation are present only south of the Alaska Peninsula. The pumiceous sand in coastal peat of northern Bristol Bay is the first documented geologic evidence of a tsunami initiated by a volcanic eruption in Alaska. Received: 3 December 1997 / Accepted: 11 April 1998  相似文献   
22.
Mount Hasan is a double-peaked stratovolcano, located in Central Anatolia, Turkey. The magmas erupted from this multi-caldera complex range from basalt to rhyolite, but are dominated by andesite and dacite. Two terminal cones (Big Mt. Hasan and Small Mt. Hasan) culminate at 3253 m and 3069 m respectively. There are four evolutionary stages in the history of the volcanic complex (stage 1: Kecikalesi volcano, 13 Ma, stage 2: Palaeovolcano, 7 Ma, stage 3: Mesovolcano and stage 4: Neovolcano). The eruptive products consist of lava flows, lava domes, and pyroclastic rocks. The later include ignimbrites, phreatomagmatic intrusive breccias and nuées ardentes, sometimes reworked as lahars. The total volume is estimated to be 354 km3, the area extent 760 km2. Textural and mineralogical data suggest that both magma mixing and fractional crystallization were involved in the generation of the andesites and dacites. The magmas erupted from the central volcanoes show a transition with time from tholeite to calc-alkaline. Three generations of basaltic strombolian cones and lava flows were emplaced contemporaneously with the central volcanoes. The corresponding lavas are alkaline with a sodic tendency.  相似文献   
23.
Abstract Several linear magnetic anomalies over continental crust have been identified in and around the Japanese Islands. The anomalies are probably related to island arc tectonic structures, but identifying specific sources has been difficult. Several deep holes were drilled in and around Aso caldera, where a linear anomaly occurs along an active fault. One drillhole located on the linear anomaly encountered a zone of highly magnetized and altered basement rocks at least 100 m thick at a depth of ∼1000 m. The other hole was located away from the anomaly and did not encounter any high-magnetic zones. Rocks from the zone have exceptionally strong remanent magnetization (several tens of A/m) sub-parallel to the present field. AF demagnetization experiments indicated that the magnetization is hard and stable. Magnetic modeling indicates that the linear anomaly is caused mainly by this layer. Microscopic examination of core samples shows that the highly magnetized zone includes secondary magnetic minerals and abundant hydrothermal alterations. Temperatures determined by fluid inclusions and down-hole temperatures show that the temperature of the highly magnetized zone was elevated in the past relative to surrounding rocks. The high temperature could destroy primary magnetic minerals and replace them with secondary magnetic minerals. Thus, the past hydrothermal system may have enhanced thermo-chemical remanent magnetization. The results can produce a model indicating that there was a past hydrothermal system related to the tectonic structure.  相似文献   
24.
In the Long Valley caldera, where seismicity has continued essentially uninterrupted since mid-1980 and uplift is documented, samples of water from hot, warm, and cold springs have been collected since September, 1982, and their222Rn concentrations analyzed. Concurrently, rocks encompassing the hydrologic systems feeding the springs were analyzed for their radioelement contents, because their uranium is the ultimate source of the222Rn in the water.The222Rn concentration in the springs varies inversely with their temperature and specific conductance. High concentrations (1500 to 2500 picocuries per liter) occur in dilute cold springs on the margins of the caldera, while low contents (12 to 25 pCi/l) occur in hot to boiling springs. Springwater radon concentrations also correlate slightly with the uranium content of the encompassing rocks.A continuous monitoring system was installed in August, 1983, at a spring issuing from basalt, to provide hourly records of radon concentration. A gamma detector is submerged in a natural pool, and we have observed that the radioactivity measured in this manner is due almost entirely to the222Rn concentration of the water. Initial operation shows diurnal and semidiurnal variations in the222Rn concentration of the springwater that are ascribed to earth tides, suggesting that those variations are responding to small changes in stress in the rocks encompassing the hydrologic system.  相似文献   
25.
Nisyros island, a Quaternary volcanic center located at the SE of the Aegean Volcanic Arc, has been in the past characterized by periods of intense seismic activity accompanied sometimes by hydrothermal explosions, the last one being in 1887. The recent long lasting episode of unrest (1995–1998) in the area is the first instrumentally documented providing information on the behavior of the volcano. Evidence from seismicity and SAR interferometry suggests that the presently active part of the Kos–Nisyros volcano-tectonic complex is located at the NW coast of Nisyros island defining an area much smaller than the whole volcano-tectonic area. Seismicity patterns vary both temporally and spatially consistently with different rates of vertical ground deformation inferred from SAR interferometry. These observations help us to discuss the different elements controlling the behavior of the volcanic system such as: the existence, location and timing of magma chamber inflation, the occurrence of tensile failure at the boundaries of the chamber and the possibility of magmatic fluids being expelled to form a shallow magmatic intrusion, the seismic failure and migration of hypocenters indicating shallow magma transport.  相似文献   
26.
The Messum igneous complex (MIC) lies within the ENE-trending zone of Lower Cretaceous (132 Ma) Damaraland intrusive complexes in Namibia, intruded into Pan-African Damara basement. It is defined by a roughly circular structure 18 km in diameter, the bounding ring fault exposed along the eastern sector. Encircling Messum are the volcanic sequences of the Goboboseb Mountains, comprising a lower basalt series (Tafelkop and Tafelberg types) followed, with intervening basalts, by four voluminous quartz latite (QL) eruptions (Goboboseb and Springbok QL units).Inferred stages of development are: (a) an initial very broad basaltic lava shield, comprising the Tafelberg and Tafelkop basalts, and Messum crater basalts (MCB; possibly ponded in near-vent lava lakes). Embedded within the lower basaltic sequence is a localised rhyolite-dominated eruptive centre (ca. 5 km in diameter), interpreted as a funnel caldera located towards the centre of the MIC. (b) Downsagging, extending northwards from Messum, following the Goboboseb QL eruptions (≥2300 km3). Ponding of overlying basaltic units. (c) Climactic Springbok QL eruption (≥6300 km3) producing further downsag together with the inward radial dip of all volcanic units towards the MIC. Ring fault initiation. (d) Cauldron subsidence emplacement of a granitoid suite, forming the MIC ‘moat’ (area between the ring fault and the core region). (e) Intrusion of gabbroic cone sheets into incompletely solidified granitic melts within the southeastern moat. Resulting hybridisation and magma mingling produced extensive development of heterogeneous granitoid and hybrid dioritic lithologies. (f) Cone sheet intrusions of the eastern gabbros into more highly solidified granitoids of the southeastern moat. (g) Intrusion of thick (1–2 km) western gabbro cone sheets, exhibiting local fine-scale layering, into solidified granitoids, mainly within the western moat. Minor late-stage granitic intrusions. (h) 2–3 Ma quiescent period followed by quartz- and ne-syenite intrusions, and finally basanite dykes, emplaced within the MIC core. Accompanying differential uplift of the core.Uplift/resurgence within the MIC has accompanied intrusion of the moat granitoids and mafic cone sheets, thereby juxtaposing volcanic and intrusive sequences. Phases of both subsidence and uplift have characterised the MIC. The NW Scotland Tertiary central igneous complexes and Messum show evidence of a number of parallel developments, but also important differences. The MIC differs markedly from caldera systems within the western USA and circum-Pacific. Messum is therefore suggested to represent a distinct class of intrusive/extrusive central complex, although probably common in large igneous provinces.  相似文献   
27.
王文革  章振国 《福建地质》2002,21(4):187-194
通过对戴云山巨型环状体西南端上涌地区4幅1:5万区域地质调查,结合区域地质资料综合研究,从火山产物及火山构造空间分布格局分析,初步认为它是以石牛山地区为中心的大型破火山组合群体,其中包括不同时期,不同级别,不同类型的火山构造,是大型破火山经过多期,多旋回,继承性和迁移喷发,同一时期,旋回火山构造多呈同心环状(卫星式)分布,不同时期,旋回火山构造往中心迁移叠置或继承套叠构成巨型环状火山构造面貌。  相似文献   
28.
本系统论述了天姆尖地区地层、岩石的重、磁参数特征和该区重磁异常的分布特征,并利用这些特征对天姆尖地区地质构造、隐伏(半隐伏)岩体、深部构造和火山构造进行了推断和解释,得出了该区具有寻找富大火山岩型铀矿远景的结论。  相似文献   
29.
庆元破火山以中心式仙桃山岩体为中心,高、中、低温成矿元素异常依次由内向外分布。它们各自拥有不同的空间展布,矿物组成,结构构造,围岩蚀变和伴生元素特征。通过地球物理与地球化学有机结合,深入探讨破火山的空间分布特征,可以开拓寻找不同类型的矿产资源及矿产资源远景评价的思路。  相似文献   
30.
雁荡山破火山口构造以其独特的火山地貌形态,完美的环状断裂和环状圈层分布的岩相,环形展市的航磁异常和地球化学异常,显示出一个地质─地球物理、地球化学、岩相─构造配置较完整的典型破火山口模式,依壳、幔二元混合模拟计算.火山岩和侵入岩源区物质组成为UC56.2DM43.8和UC56.4DM43.6,两者来自相似源区.源区处于地壳下部。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号