首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   109篇
  国内免费   117篇
地球物理   366篇
地质学   195篇
海洋学   69篇
天文学   1篇
综合类   6篇
自然地理   5篇
  2023年   5篇
  2022年   12篇
  2021年   11篇
  2020年   20篇
  2019年   25篇
  2018年   32篇
  2017年   24篇
  2016年   37篇
  2015年   40篇
  2014年   30篇
  2013年   40篇
  2012年   30篇
  2011年   33篇
  2010年   25篇
  2009年   36篇
  2008年   27篇
  2007年   32篇
  2006年   26篇
  2005年   24篇
  2004年   22篇
  2003年   20篇
  2002年   23篇
  2001年   11篇
  2000年   8篇
  1999年   10篇
  1998年   10篇
  1997年   6篇
  1996年   8篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有642条查询结果,搜索用时 375 毫秒
51.
In the paper, we present newly developed hydro-mechanical hypoplastic model for partially saturated soils predicting small strain stiffness. Hysteretic void ratio dependent water retention model has been incorporated into the existing hypoplastic model. This required thorough revision of the model structure to allow for the hydro-mechanical coupling dependencies. The model is formulated in terms of degree of saturation, rather than of suction. Subsequently, the small strain stiffness effects were incorporated using the intergranular strain concept modified for unsaturated conditions. New features included degree of saturation-dependent size of the elastic range and an updated evolution equation for the intergranular strain. The model has been evaluated using two comprehensive data sets on completely decomposed tuff from Hong-Kong and Zenos Kaolin from Iran. It has been shown that the modified intergranular strain formulation coupled with the hysteretic water retention model correctly reproduces the effects of both the stress and suction histories on small strain stiffness evolution. The model can correctly predict also different other aspects of partially saturated soil behaviour, starting from the very small strain range up to the asymptotic large-strain response.  相似文献   
52.
When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, numerous experimental studies in the laboratory have been carried out to characterize the strength and stiffness of frozen soils. The goals of this study are to evaluate the strength characteristics of frozen soils, which underwent confinement in freezing and shearing stages, and to estimate the stiffness variation by shear wave velocity during shear phase. The specimens are prepared in a brass cell by mixing sand and silt with 10% degree of saturation at a relative density of 60%. The applied normal stresses as confining stresses are 5, 10, 25 and 50 k Pa. When the temperature of the specimens is lowered up to-5 °C, direct shear tests are carried out. Furthermore, shear waves are continuously measured through bender elements during shearing stage for the investigation of stiffness change. Test results show that shear strength and stiffness are significantly affected by the confining stress in freezing and shearing phases. This study suggests that the strength and stiffness of frozen soils may be dependent on the confining stresses applied during freezing and shearing.  相似文献   
53.
This paper presents novel visualization techniques to simplify representation of the fourth‐order material stiffness tensor as a set of three‐dimensional geometric objects. Stiffness visualization aids in understanding the complex stiffness characteristics of highly non‐linear constitutive models including modelled material anisotropy and loading path dependent stiffness variation. Stiffness visualization is relevant for understanding the relationship of material stiffness to global behaviour in the analysis of a boundary value problem. The spherical pulse stiffness visualization method, developed in the acoustics field, is extended to visualize stiffness of geomaterials using three three‐dimensional objects. This method is limited to relatively simple constitutive models with symmetric stiffness matrices insensitive to loading magnitude and direction. A strain dependent stiffness visualization method is developed that allows the examination of material stiffness for a range of loading directions and is suitable for highly non‐linear and path dependent material models. The proposed stiffness visualization can be represented as 3‐D, 2‐D and 1‐D objects. The visualization technique is used to represent material stiffness and its evolution during simulated soil laboratory tests and deep excavation construction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
54.
采用HBTA2.5程序,对一变刚度钢管混凝土短柱隔震结构进行了弹塑性时程分析。分析结果表明,其隔震装置的水平变形和耗能能力可以大大减轻地震对结构的影响。提出钢管混凝土短柱隔震结构在工程应用将有很好的发展前景。  相似文献   
55.
陶传迁    解恒燕    杨光  刘文洋 《世界地震工程》2021,(4):122-136
为了拓宽隔震技术的应用范围,提出了梁板分离式分层隔震结构概念,其核心思想是将框架结构或框架剪力墙结构中的所有楼层或某些楼层的全部或部分楼板通过橡胶隔震支座支承于梁上。建立了分层隔震结构的动力分析模型,利用自编程序按时程分析法和振型分解反应谱法分别计算了不同工况下分层隔震结构的地震反应,运用隔震技术的基本原理和振型分析法分析了刚度比和场地条件等因素对减震效果的影响。发现了刚度比变化过程中分层隔震结构的两个极限状态,并利用其中之一初步判断减震效果。  相似文献   
56.
An analytical approach using a Winkler model is investigated to provide analytical solutions of settlement of a rectangular pile subjected to vertical loads in nonhomogeneous soils. For a vertically loaded pile with a rectangular cross section, the settlement influence factor of a normal pile in nonhomogeneous soils is derived from Mindlin's solution for elastic continuum analysis. For short piles with rectangular and circular cross sections, the modified forms of settlement influence factors of normal piles are produced taking into account the load transfer parameter proposed by Randolph for short circular piles. The modulus of subgrade reaction along a rectangular pile in nonhomogeneous soils is expressed by using the settlement influence factor related to Mindlin's solution to combine the elastic continuum approach with the subgrade‐reaction approach. The relationship between settlement and vertical load for a rectangular pile in nonhomogeneous soils is available in the form of the recurrence equation. The formulation of settlement of soils surrounding a rectangular pile subjected to vertical loads in nonhomogeneous soils is proposed by taking into account Mindlin's solution and both the equivalent thickness and the equivalent elastic modulus for layers in the equivalent elastic method. The difference of settlement between square and circular piles is insignificant, and the settlement of a rectangular pile decreases as the aspect ratio of the rectangular pile cross section increases. The comparison of results calculated by the present method for a rectangular pile in nonhomogeneous soils has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
57.
A general set of 3-D dynamic field equations for a cable segment is derived based on the classical Euler-Kirchhoff theory of an elastica. The model includes flexural stiffness to remove the potential singularity when cable tension vanishes and can be reduced to the equations for a perfectly flexible cable. A hybrid model and a solution scheme by direct integration are then proposed to solve the oceanic cable/body system with a localized low-tension region. Numerical examples demonstrate the capability and validity of the formulation and the numerical algorithm.  相似文献   
58.
This article demonstrates how system identification techniques can be successfully applied to a soil-structure interaction system in conjunction with the results of the forced vibration tests on the Hualien large-scale seismic test structure which was recently built in Taiwan for an international joint research. The parameters identified are the shear moduli of several near-field soil regions as well as Young's moduli of the shell sections of the structure. The soil-structure interaction system is represented by the finite element method combined with infinite element formulation for the unbounded layered soil medium. Preliminary investigations are carried out on the results of the static stress analysis for the soil medium and the results of the in-situ tests to divide the soil-structure system into several regions with homogeneous properties and to determine the lower and upper bounds of the parameters for the purpose of identification. Then two sets of parameters are identified for two principal directions based on the forced vibration test data by minimizing the estimation error using the constrained steepest descent method. The simulated responses for the forced vibration tests using the identified parameters show excellent agreement with the test data. The present estimated parameters are also found to be well compared with the average value of those by other researchers in the joint project.  相似文献   
59.
变刚度钢管混凝土短柱隔震装置的性能研究   总被引:7,自引:1,他引:6  
本文对变刚度钢管混土短柱震的滞回收性进行了理论分析和试验验证。对装置的隔震作用以及耗能特性进行了讨论通过低周反复荷载试验,证了分析的正确性。同时,试验还证明,变刚度钢管混凝土短柱震装置能很好的地耗散能量,从而减小地震反应,作者认为,该是一种价格性能比较优越的隔震装置,在工程实践中将有广阔的应用与推广前景。  相似文献   
60.
Iterative methods for the solution of non‐linear finite element equations are generally based on variants of the Newton–Raphson method. When they are stable, full Newton–Raphson schemes usually converge rapidly but may be expensive for some types of problems (for example, when the tangent stiffness matrix is unsymmetric). Initial stiffness schemes, on the other hand, are extremely robust but may require large numbers of iterations for cases where the plastic zone is extensive. In most geomechanics applications it is generally preferable to use a tangent stiffness scheme, but there are situations in which initial stiffness schemes are very useful. These situations include problems where a nonassociated flow rule is used or where the zone of plastic yielding is highly localized. This paper surveys the performance of several single‐parameter techniques for accelerating the convergence of the initial stiffness scheme. Some simple but effective modifications to these procedures are also proposed. In particular, a modified version of Thomas' acceleration scheme is developed which has a good rate of convergence. Previously published results on the performance of various acceleration algorithms for initial stiffness iteration are rare and have been restricted to relatively simple yield criteria and simple problems. In this study, detailed numerical results are presented for the expansion of a thick cylinder, the collapse of a rigid strip footing, and the failure of a vertical cut. These analyses use the Mohr–Coulomb and Tresca yield criteria which are popular in soil mechanics. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号