首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   11篇
  国内免费   8篇
地球物理   23篇
地质学   34篇
海洋学   49篇
天文学   1篇
综合类   2篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   13篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2010年   5篇
  2009年   9篇
  2008年   6篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   1篇
  1996年   4篇
  1993年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
91.
Abstract: The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences of the Great Ordovician Biodiversification Event (GOBE). The pre-GOBE sedimentary systems deposited in Tremadoc display widespread microbialite and flat-pebble conglomerates, and a less extent of bioturbation. Through the transitional period of early Floian, the sedimentary systems in the rest of the Early and Mid- Ordovician change to GOBE type and are characterized by intensive bioturbation and vanishing flat-pebble conglomerates and subtidal microbial sediments. The irreversible changes in sedimentary systems in North China are linked to the GOBE, which conduced the increase in infaunal tiering, the expansion of infaunal ecospace, and the appearance of new burrowers related to the development of the Paleozoic Evolutionary Fauna during the Ordovician biodiversification. Thus, changes in sedimentary systems during the pivotal period of the GOBE were consequences of a steep diversification of benthic faunas rather than the GOBE’s environmental background.  相似文献   
92.
Molluscs are a diverse and ubiquitous group of organisms which contribute to the formation of biogenic sediments and are one of the major prey taxa for the neritic‐stage loggerhead sea turtles (Caretta caretta) worldwide. Here we investigated to what degree molluscs contribute to the diet of individual turtles, and what role the feeding strategy of loggerheads might play in bioturbation, one of the key processes in nutrient transport in marine ecosystems. We performed a detailed analysis of benthic molluscs from the digestive tracts of 62 loggerhead sea turtles (curved carapace length: 25.0–85.4 cm) found in the Northern Adriatic Sea. From 50 of the turtles that contained benthic molluscs, we identified 87 species representing 40 families and three classes (Gastropoda, Bivalvia and Scaphopoda), including 72 new dietary records for loggerhead turtle. Most of the identified molluscs were small‐sized species (shell length ≤ 3 cm) and were often found in a subfossil condition. Their intake may be considered a byproduct of infaunal mining, while larger molluscs were mainly found crushed into smaller fragments. Through such foraging behaviour loggerheads actively rework sediments, increase the surface area of shells and the rate of shells disintegration, acting as bioturbators in this system. We conservatively estimate that loggerheads in the neritic zone of the Adriatic Sea bioturbate about 33 tonnes of mollusc shells per year, and hypothesize about the possible effects of bioturbation reduction on environmental changes in the Northern Adriatic ecosystem.  相似文献   
93.
In the northern part of the Kattegat, western Sweden, a series of marine depressions remain since the last glaciation. One of these, the well-oxygenated Alkor Deep, is about 3 km long and 800 m wide and with a depth of 138 m. Random depth-stratified sampling was made along four transects on the slopes including benthic macrofauna (0·1 m2grab samples) and sediment profile imaging. A significant positive correlation was found between depth and the faunal variables abundance and biomass. Deposit feeders such as Maldane sarsi, Heteromastus filiformis andAbra alba were among the dominants and may have been supported by down-slope advected organic material. In many images, pockets and extensive burrows were seen in the sediment that appeared to be constructed by the crustaceans Calocaris macandreae and Maera loveni. The ecological significance of their irrigation of the sediment is discussed. Due to the faunal activity deep down in the sediments of the slopes, the mean apparent redox potential discontinuity (RPD) was found as deep as between 8·0 and 11·3 cm depth, and RPD was significantly positively correlated with water depth. On the slopes there appears to be a balance between the input of organic material and the capacity of the benthic organisms to assimilate that carbon.  相似文献   
94.
The impact of bioturbation in Lake Baikal sediments, particularly on rhythmic layering and mixing, was assessed by studying the actual vertical distribution of benthic animals in continuous accumulation zones selected by seismic survey (Vydrino Shoulder, Posolskoe Bank, Continent Ridge). To assess the influence of the bioturbation, animals were extracted from short cores and identified at the relevant taxonomic level. The faunal distribution is examined in parallel with the bioturbation tracks observed in thin section. Oligochaeta, Nematoda, Ostracoda, Copepoda, Gammaridae, Chironomidae and Hydrachnidia were found inhabiting the sediment. Among them, only oligochaete worms were assumed to have a significant impact on sediment mixing because of their “conveyor belt” feeding. The other two most abundantly sampled groups, nematods and copepods, belong to the interstitial fauna that has no significant impact on the vertical displacement of sediment particles and do not ingest the sediment. The presence of a benthic fauna as deep as 15 cm in the sediment indicates that the possibility of sediment disturbance by invertebrate activity cannot be dismissed in Lake Baikal. The effect of biological mixing is more limited in the deepest stations because the number of potential bioturbators is reduced, qualitatively as well as quantitatively. Located in the abyssal zone, Continent and Vydrino (but outside turbidites) deep stations appear to be most promising sediment records for tracking climate signal at high resolution.  相似文献   
95.
The suitability of marsh sites for sea‐level studies was examined based on field experiments along a transect from low to high marsh. Bead distributions were determined both seasonally and after 7 years. Seasonal sediment mixing was greatest in the low marsh and in the late spring and early summer, when biological activity is greatest. However, after an initial interval of relatively intense reworking, the bead concentrations reached an approximate equilibrium profile characteristic of each marsh environment as reflected by the profiles obtained after 7 years. Mixed‐layer thickness is greatest (>10 cm) in the intermediate and low marsh, and burial rates are rapid (3.7–11.1 mm yr?1). Moreover, burial rates are comparable to or even surpass longer‐term (30 to >150 yr) radiotracer‐derived sediment accumulation rates and rates of local and regional sea‐level rise (~4 mm yr?1). Therefore, sediment accumulation rates appear to reflect primarily sediment resuspension/redeposition within the system due to bioturbation. Thus, bioturbation may be critical to the ability of marshes to keep pace with sea level, while seemingly precluding the use of low marsh for high‐resolution sea‐level studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
96.
Maldanid polychaetes can be important components of marine benthic communities, playing significant roles in particle subduction or sediment irrigation. Many maldanids are known to inhabit tubes consisting of sediments consolidated by mucus; the structure and composition of these tubes, and their potential impact on benthic environments, are poorly known. We examined the three-dimensional organization of Maldane sarsi tubes, using CT scanning together with analyses of sediment grain size and concentrations of Fe, Mn, organic carbon and bacteria in tube material. M. sarsi tubes consist of stacks of individual consolidated mud disks, surrounding a dense, continuous, inner tube. The tubes of M. sarsi contained fewer fine particles than surrounding sediments, and greater concentrations of Fe, Mn, organic carbon and bacteria, especially in the inner zone. These distributions suggest that tube irrigation affects Fe and Mn oxidation and precipitation in a narrow zone surrounding M. sarsi, and that mucous secretion and potential feeding activities (the hoeing of surface sediments) lead to increases in organic carbon and bacteria in the inner, and deepest parts of the tube. The finding of relict tubes, buried at up to 15 cm depth, indicates a relatively high longevity for these structures and suggests a potential importance in biogeochemical cycling.  相似文献   
97.
Most hillslope studies examining the interplay between climate and earth surface processes tend to be biased towards eroding parts of landscapes. This limitation makes it difficult to assess how entire upland landscapes, which are mosaics of eroding and depositional areas, evolve physio‐chemically as a function of climate. Here we combine new soil geochemical data and published 10Be‐derived soil production rates to estimate variations in chemical weathering across two eroding‐to‐depositional hillslopes spanning a climate gradient in southeastern Australia. At the warmer and wetter Nunnock River (NR) site, rates of total soil (–3 to –14 g m‐2 yr‐1; negative sign indicates mass loss) and saprolite (–18 to –32 g m‐2 yr‐1) chemical weathering are uniform across the hillslope transect. Alternatively, the drier hillslope at Frog's Hollow (FH) is characterized by contrasting weathering patterns in eroding soils (–30 to –53 g m‐2 yr‐1) vs. depositional soils (+91 g m‐2 yr‐1; positive sign indicates mass addition). This difference partly reflects mineral grain size sorting as a result of upslope bioturbation coupled with water‐driven soil erosion, as well as greater vegetative productivity in moister depositional soils. Both of these processes are magnified in the drier climate. The data reveal the importance of linking the erosion–deposition continuum in hillslope weathering studies in order to fully capture the coupled roles of biota and erosion in driving the physical and chemical evolution of hillslopes. Our findings also highlight the potential limitations of applying current weathering models to landscapes where particle‐sorting erosion processes are active. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
98.
We have studied the impact of the bioturbating macrofauna, in particular the lugworm Arenicola marina and the bivalve Cerastoderma edule, on abundances and distribution patterns of total bacteria and of bacteria of selected functional groups in sandy intertidal sediments. The selected groups comprised the colourless sulphur-oxidising bacteria and the anoxygenic phototrophic bacteria, which are expected to occupy small zones at the oxygen–sulphide interface in stable (non-bioturbated) sediments. The presence of a wooden wreck buried in the sediment at 10 cm depth within a large area of intertidal sand flat colonised by lugworms provided a unique opportunity to confront field observations with laboratory simulations. The site with the wooden wreck, which was used as control site, was devoid of both A. marina and C. edule, while the composition of the rest of the zoobenthic community was rather similar to that of the surrounding area. In the field, the density of total bacteria was approximately one order of magnitude higher in the control site than in the natural (bioturbated) site. This can be explained by the higher contents of silt and clay particles (higher surface-area/volume ratio) and higher total organic-carbon contents found at the control site. It appears that the presence of macrofauna affects sedimentation processes, which indirectly influence bacterial dynamics. Samples from the control site have been incubated in the laboratory with A. marina and C. edule added (bioturbated core), while an unamended core served as a control. The laboratory experiments contrasted with the field observations, because it was found that total bacteria were actually higher in the deeper layers of the bioturbated core. Moreover, the populations were more homogeneous (less stratified) and colourless sulphur bacteria were on average less numerous in the bioturbated core. In general, laboratory incubations resulted in a decrease of total bacteria with a concomitant increase of colourless and phototrophic sulphur-oxidising bacteria and thus in modifications of the bacterial community structure. Hence, our results demonstrate that care must be taken in extrapolating results from laboratory experiments (e.g. mesocosm research) to field situations.  相似文献   
99.
Laboratory and in situ experiments were performed to assess the use of bromide as a tracer forin situ studies of benthic solute exchange. Bromide was used in the benthic chamber lander ‘ Elinor ’ for flux measurements in coastal sediments of the German Bight, Kiel Bight and Skagerrak (28–700 m water depth). Tracer and total oxygen uptake were monitored simultaneously in the same chamber incubation. Concurrently, in situ oxygen micro-profiles were recorded at the same locations by the profiling lander ‘ Profilur ’. Deployment in an anoxic silt (Kiel Bight) confirmed that in the absence of bioturbation and advection, tracer transport into the sediment was driven solely by molecular diffusion. This flux could be well described by a simple box model accounting for molecular diffusion only. In oxic sediments (German Bight and Skagerrak) enhanced exchange of bromide tracer due to bioirrigation parallelled enhanced oxygen uptake equivalent to a 4-fold molecular diffusive flux. Our experiments showed that incubations can be short. Depending on irrigation activity of the fauna, however, incubation length should exceed 3 h in order to provide a useful data base for flux calculations. The method demonstrating caveats is discussed and indicate possible improvements. The results show how the bromide tracer addition can be used as a tool for determining solute fluxes exceeding diffusive flux in benthic chamber incubations.  相似文献   
100.
三疣梭子蟹幼体消化道发育的组织学研究   总被引:1,自引:0,他引:1  
三疣梭子蟹的消化道分前肠、中肠和后肠,前后肠起源于外胚层,腔内有角质衬里,中肠起源于内胚层,腔内无角质层。消化管壁均由上皮层、结缔组织层、肌肉层和外膜组成。前肠包括口腔、食道和胃,食道壁内褶形成食道嵴,食道嵴的折叠程度以及食道放射肌的排列密度随幼体发育而增加。胃的结构复杂,其内的角质层特化成前部的胃磨和后部的腺滤器。胃磨、腺滤器、贲门胃和幽门胃之间的比例以及贲门-幽门瓣在幼体发育过程中变化明显。中肠的前端背面有一对前盲囊管,沿胃的背面向前延伸,在发育上有长度的变化。中肠后端背面发出一支后盲囊管,在Z2形成,随后逐渐延长并发生弯曲。后肠始于腹部第二节,在蚤状幼体时最长可达中肠的两倍多,大眼幼体后随着腹部的退化而明显缩短。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号