首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2121篇
  免费   133篇
  国内免费   228篇
测绘学   99篇
大气科学   116篇
地球物理   672篇
地质学   1147篇
海洋学   241篇
天文学   59篇
综合类   14篇
自然地理   134篇
  2024年   17篇
  2023年   45篇
  2022年   56篇
  2021年   85篇
  2020年   179篇
  2019年   122篇
  2018年   146篇
  2017年   202篇
  2016年   133篇
  2015年   158篇
  2014年   256篇
  2013年   381篇
  2012年   246篇
  2011年   34篇
  2010年   41篇
  2009年   26篇
  2008年   29篇
  2007年   43篇
  2006年   36篇
  2005年   41篇
  2004年   41篇
  2003年   28篇
  2002年   35篇
  2001年   9篇
  2000年   16篇
  1999年   10篇
  1998年   8篇
  1997年   13篇
  1996年   12篇
  1995年   9篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1954年   1篇
排序方式: 共有2482条查询结果,搜索用时 359 毫秒
871.
Interferometric identification and health monitoring of high‐rise buildings has been gaining increasing interest in recent years. The wave dispersion in the structure has been largely ignored in these efforts but needs to be considered to further develop these methods. In this paper, (i) the goodness of estimation of vertical wave velocity in buildings, as function of frequency, by two nonparametric interferometric techniques is examined, using realistic fixed‐base Timoshenko beam benchmark models. Such models are convenient because the variation of phase and group velocities with frequency can be derived theoretically. The models are those of the NS and EW responses of Millikan Library. One of the techniques, deconvolution interferometry, estimates the phase velocity on a frequency band from phase difference between motions at two locations in the structure, while the other one estimates it approximately at the resonant frequencies based on standing wave patterns. The paper also (ii) examines the modeling error in wave velocity profiles identified by fitting layered shear beam in broader band impulse response functions of buildings with significant bending flexibility. This error may affect inferences on the spatial distribution of damage from detected changes in such velocity profiles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
872.
Compared to other estimation techniques, one advantage of geostatistical techniques is that they provide an index of the estimation accuracy of the variable of interest with the kriging estimation standard deviation (ESD). In the context of radar–raingauge quantitative precipitation estimation (QPE), we address in this article the question of how the kriging ESD can be transformed into a local spread of error by using the dependency of radar errors to the rain amount analyzed in previous work. The proposed approach is implemented for the most significant rain events observed in 2008 in the Cévennes-Vivarais region, France, by considering both the kriging with external drift (KED) and the ordinary kriging (OK) methods. A two-step procedure is implemented for estimating the rain estimation accuracy: (i) first kriging normalized ESDs are computed by using normalized variograms (sill equal to 1) to account for the observation system configuration and the spatial structure of the variable of interest (rainfall amount, residuals to the drift); (ii) based on the assumption of a linear relationship between the standard deviation and the mean of the variable of interest, a denormalization of the kriging ESDs is performed globally for a given rain event by using a cross-validation procedure. Despite the fact that the KED normalized ESDs are usually greater than the OK ones (due to an additional constraint in the kriging system and a weaker spatial structure of the residuals to the drift), the KED denormalized ESDs are generally smaller the OK ones, a result consistent with the better performance observed for the KED technique. The evolution of the mean and the standard deviation of the rainfall-scaled ESDs over a range of spatial (5–300 km2) and temporal (1–6 h) scales demonstrates that there is clear added value of the radar with respect to the raingauge network for the shortest scales, which are those of interest for flash-flood prediction in the considered region.  相似文献   
873.
874.
Abstract

Environmental flow provisions are a legal obligation under South Africa’s National Water Act (1998) where they are known as the “ecological reserve”, which is now being realized in river operations. This article presents a semi-quantitative method, based on flow–duration curve (FDC) analysis, used to assess the compliance of the Crocodile (East) River with the reserve in an historical context. Using both monthly and daily average flow data, we determine the extent and magnitude of non-compliant flows against environmental water requirements (EWRs) for three periods (1960–1983, 1983–2000, and 2000–2010). The results suggest a high degree of non-compliance, with the reserve increasing with each of these periods (14%, 35%, and 39% of the time), respectively, where effects were most pronounced in the low-flow season. The results also suggest that, whilst the magnitudes of reserve infringements for the latter period are relatively high, there appears to have been some improvement since the implementation of the river’s operating rules.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Riddell, E., Pollard, S., Mallory, S., and Sawunyama, T., 2014. A methodology for historical assessment of compliance with environmental water allocations: lessons from the Crocodile (East) River, South Africa. Hydrological Sciences Journal, 59 (3–4), 831–843.  相似文献   
875.
Abstract

A comprehensive hydro-ecological investigation was conducted to determine the ecological response of increased groundwater withdrawals from the Kirkwood-Cohansey aquifer system, an important source of water supply in southern New Jersey, USA. Collocated observations were made of aquatic-macroinvertebrate assemblages and stream hydrologic attributes to develop flow–ecology response relations. A sub-regional transient groundwater flow model (MODFLOW) was used to simulate three plausible high-stress groundwater-withdrawal scenarios which resulted in stream baseflow reductions of approximately 0.12, 0.20, and 0.26 m3 s-1. These reduction scenarios were used to construct flow-alteration ecological response models to evaluate aquatic-macroinvertebrate response to streamflow reduction. For example, flow-alteration ecological response models indicate that if groundwater withdrawals diminish mean annual streamflow from 1.1 to 0.6 m3 s-1, the abundance of intolerant taxa could be reduced by as much as 20%. These flow-alteration ecological response modelling results could be used by resource professionals to evaluate alternative water management strategies to determine maximum basin withdrawal rates that meet ongoing human water demand while protecting biological integrity.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Kennen, J.G., Riskin, M.L., and Charles, E.G., 2014. Effects of streamflow reductions on aquatic macroinvertebrates: linking groundwater withdrawals and assemblage response in southern New Jersey streams, USA. Hydrological Sciences Journal, 59 (3–4), 545–561.  相似文献   
876.
Abstract

The generation of reliable quantitative precipitation estimations (QPEs) through use of raingauge and radar data is an important issue. This study investigates the impacts of radar QPEs with different densities of raingauge networks on rainfall–runoff processes through a semi-distributed parallel-type linear reservoir rainfall–runoff model. The spatial variation structures of the radar QPE, raingauge QPE and radar-gauge residuals are examined to review the current raingauge network, and a compact raingauge network is identified via the kriging method. An analysis of the large-scale spatial characteristics for use with a hydrological model is applied to investigate the impacts of a raingauge network coupled with radar QPEs on the modelled rainfall–runoff processes. Since the precision in locating the storm centre generally represents how well the large-scale variability is reproduced; the results show not only the contribution of kriging to identify a compact network coupled with radar QPE, but also that spatial characteristics of rainfalls do affect the hydrographs.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Pan, T.-Y., Li, M.-Y., Lin, Y.-J., Chang, T.-J., Lai, J.-S., and Tan, Y.-C., 2014. Sensitivity analysis of the hydrological response of the Gaping River basin to radar-raingauge quantitative precipitation estimates. Hydrological Sciences Journal, 59 (7), 1335–1352. http://dx.doi.org/10.1080/02626667.2014.923969  相似文献   
877.
A comprehensive dynamic three dimensional finite element model, which includes the effect of lots of important parameters on the micropiles seismic performance, has been presented. The validation of the built model has been carried out using remodeling a single degree of freedom shaking table test done by Mc Manus at the University of Canterbury. The gained results proved the accuracy of the constructed model. Then, using the parametric analysis, effects of all the earthquake characteristics, soil properties, superstructure and micropiles' cap and micropiles structure on the seismic performance of micropiles have been investigated by means of presenting internal forces and displacements which occurred as the main result of earthquake. Furthermore, using the data analysis, the most and the least influential parameters on internal forces are obtained based on the Cosine Amplitude Method (CAM).  相似文献   
878.
879.
The dynamic interaction between a layered halfspace and quasi translationally invariant structures such as roads, railway tracks, tunnels, dams, and lifelines can be modelled using a computationally efficient 2.5D approach, assuming invariance of the geometry in the longitudinal direction. This assumption is not always fulfilled in practice, however. Even for elongated structures, full 3D computations may be required for an accurate solution of the dynamic soil–structure interaction problem. This paper presents a spatial windowing technique for elastodynamic transmission and radiation problems that allows accounting for the finite length of a structure, still maintaining the computational efficiency of a 2.5D formulation. The proposed technique accounts for the diffraction occurring at the structure's edges, but not for its modal behaviour resulting from reflections of waves at its boundaries. Numerical examples of a barrier for vibration transmission and a surface foundation are discussed to demonstrate the accuracy and applicability of the proposed methodology. Full 3D calculations are performed to provide a rigorous validation for each of these examples. It is demonstrated that the proposed technique is appropriate as long as the response is not dominated by the resonant behaviour of individual modes of the structure.  相似文献   
880.
Understanding the soil–structure interaction (SSI) mechanism is crucial in the seismic design of nuclear power plant (NPP) containment systems. Although the numerical analysis method is generally used in seismic design, there is a need for experimental verification for the reliable estimation of SSI behavior. In this study a dynamic centrifuge test was performed to simulate the SSI behavior of a Hualien large-scale seismic test (LSST) during the Chi-Chi earthquake. To simulate the soil profile and dynamic soil properties of the Hualien site, a series of resonant column (RC) tests was performed to determine the model soil preparation conditions, such as the compaction density and the ratio of soil–gravel contents. The variations in the shear wave velocity (VS) profiles of the sand, gravel, and backfill layers in the model were estimated using the RC test results. During the centrifuge test, the VS profiles of the model were evaluated using in-flight bender element tests and compared with the in-situ VS profile at Hualien. The containment building model was modeled using aluminum and the proper scaling laws. A series of dynamic centrifuge tests was performed with a 1/50 scale model using the base motion recorded during the Chi-Chi-earthquake. In the soil layer and foundation level, the centrifuge test results were similar to the LSST data in both the time and frequency domains, but there were differences in the structure owing to the complex structural response as well as the material damping difference between the concrete in the prototype and aluminum in the model. In addition, as the input base motion amplitude was increased to a maximum value of 0.4g (prototype scale), the responses of the soil and containment model were measured. This study shows the potential of utilizing dynamic centrifuge tests as an experimental modeling tool for site specific SSI analyses of soil–foundation–NPP containment system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号