首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14995篇
  免费   2745篇
  国内免费   2906篇
测绘学   877篇
大气科学   1098篇
地球物理   4373篇
地质学   7140篇
海洋学   2033篇
天文学   2021篇
综合类   772篇
自然地理   2332篇
  2024年   82篇
  2023年   261篇
  2022年   491篇
  2021年   513篇
  2020年   554篇
  2019年   632篇
  2018年   537篇
  2017年   552篇
  2016年   595篇
  2015年   631篇
  2014年   753篇
  2013年   700篇
  2012年   818篇
  2011年   859篇
  2010年   706篇
  2009年   1009篇
  2008年   926篇
  2007年   1018篇
  2006年   1024篇
  2005年   876篇
  2004年   866篇
  2003年   865篇
  2002年   705篇
  2001年   650篇
  2000年   622篇
  1999年   541篇
  1998年   583篇
  1997年   354篇
  1996年   329篇
  1995年   307篇
  1994年   270篇
  1993年   243篇
  1992年   199篇
  1991年   126篇
  1990年   87篇
  1989年   100篇
  1988年   62篇
  1987年   67篇
  1986年   39篇
  1985年   20篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1977年   5篇
  1976年   5篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
851.
852.
We evaluate the success of linear tidal-torque theory (TTT) in predicting galactic-halo spin using a cosmological N -body simulation with thousands of well-resolved haloes. The protohaloes are identified by tracing today's haloes back to the initial conditions. The TTT predictions for the protohaloes match, on average, the spin amplitudes of the virialized haloes of today, if linear growth is assumed until ∼ t 0/3, or  55–70  per cent of the halo effective turn-around time. This makes it a useful qualitative tool for understanding certain average properties of galaxies, such as total spin and angular momentum distribution within haloes, but with a random scatter of the order of the signal itself. Non-linear changes in spin direction cause a mean error of ∼50° in the TTT prediction at t 0, such that the linear spatial correlations of spins on scales ≥1  h −1 Mpc are significantly weakened by non-linear effects. This questions the usefulness of TTT for predicting intrinsic alignments in the context of gravitational lensing. We find that the standard approximations made in TTT, including a second-order expansion of the Zel'dovich potential and a smoothing of the tidal field, provide close-to-optimal results.  相似文献   
853.
In this series of papers we investigate the orbital structure of three-dimensional (3D) models representing barred galaxies. In the present introductory paper we use a fiducial case to describe all families of periodic orbits that may play a role in the morphology of three-dimensional bars. We show that, in a 3D bar, the backbone of the orbital structure is not just the x1 family, as in two-dimensional (2D) models, but a tree of 2D and 3D families bifurcating from x1. Besides the main tree we have also found another group of families of lesser importance around the radial 3:1 resonance. The families of this group bifurcate from x1 and influence the dynamics of the system only locally. We also find that 3D orbits elongated along the bar minor axis can be formed by bifurcations of the planar x2 family. They can support 3D bar-like structures along the minor axis of the main bar. Banana-like orbits around the stable Lagrangian points build a forest of 2D and 3D families as well. The importance of the 3D x1-tree families at the outer parts of the bar depends critically on whether they are introduced in the system as bifurcations in z or in   z˙   .  相似文献   
854.
855.
856.
857.
The dynamical equations describing the evolution of a self-gravitating fluid can be rewritten in the form of a Schrödinger equation coupled to a Poisson equation determining the gravitational potential. This approach has a number of interesting features, many of which were pointed out in a seminal paper by Widrow & Kaiser. In particular we show that this approach yields an elegant reformulation of an idea of Jones concerning the origin of lognormal intermittency in the galaxy distribution.  相似文献   
858.
We present Galaxy Evolution Explorer ( GALEX ) far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of the nearby early-type galaxy NGC 2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2 kpc, with suggestions of another partial ring at an even larger radius. Blue FUV–NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outwards, suggesting young stellar populations (≲1 Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1 per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9 kpc, respectively), as traced by [O  iii ] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of  78 ± 6  km s−1 kpc−1, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC 2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC 2974 as an E4 elliptical.  相似文献   
859.
We present disk thicknesses, some other parameters and their statistics of 108 non-edge-on spiral galaxies. The method for determining the disk thickness is based on solving Poisson's equation for a disturbance of matter density in three-dimensional spiral galaxies. From the spiral arms found we could obtain the pitch angles, the inclination of the galactic disk, and the position of the innermost point (the forbidden region with radius r 0 to the galactic center) of the spiral arm, and finally the thickness.  相似文献   
860.
We present the first detections of the ground-state H216O (110-101) rotational transition (at 556.9 GHz) and the 13CO (5-4) rotational transition from the atmosphere of Venus, measured with the Submillimeter Wave Astronomy Satellite (SWAS). The observed spectral features of these submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. The measured water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the line in December 2002 and July 2004, and no detections in January and March 2004. Retrieval of atmospheric parameters was performed using a multi-transition inversion algorithm, combining simultaneous retrievals of temperature, carbon monoxide, and water profiles under imposed constraints. Analysis of the SWAS spectra resulted in measurements or upper limits for the globally averaged mesospheric water vapor abundance for each of the four observation periods, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. These results are fully consistent with the long-term study of mesospheric water vapor from millimeter and submillimeter observations of HDO [Sandor, B.J., Clancy, R.T., 2005. Icarus 177, 129-143]. The December 2002 observations detected very rapid change in the mesospheric water abundance. Over five days, a deep water absorption feature consistent with a water vapor abundance of 4.5±1.5 parts per million suddenly gave way to a significantly shallower absorption, implying a decrease in the water vapor abundance by a factor of nearly 50 in less that 48 h. In 2004, similar changes in the water vapor abundance were measured between the March and July SWAS observing periods, but variability on time scales of less than a week was not detected. The mesospheric water vapor is expected to be in equilibrium with aerosol particles, primarily composed of concentrated sulfuric acid, in the upper haze layers of the Venus atmosphere. If true, moderate amplitude (10-15 K) variability in mesospheric temperature, previously noted in millimeter spectroscopy observations of Venus, can explain the rapid water vapor variability detected by SWAS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号