首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
测绘学   6篇
大气科学   2篇
地球物理   12篇
地质学   15篇
综合类   1篇
自然地理   2篇
  2024年   1篇
  2023年   1篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
21.
Epidemic populations of mountain pine beetle highlight the need to understand landscape scale spatial patterns of infestation. The observed infestation patterns were explored using a randomization procedure conditioned on the probability of forest risk to beetle attack. Four randomization algorithms reflecting different representations of the data and beetle processes were investigated. Local test statistics computed from raster representations of surfaces of kernel density estimates of infestation intensity were used to identify locations where infestation values were significantly higher than expected by chance (hot spots). The investigation of landscape characteristics associated with hot spots suggests factors that may contribute to high observed infestations.  相似文献   
22.
中国特有煤种——树皮煤,因具有高氢、高挥发分及高焦油产率等特点而备受关注,而其中富含的特殊显微组分——树皮体,其热性质一直未得到深入研究,直接影响树皮煤的合理利用。采用热重分析仪对不同升温速率下树皮体、镜质体及原煤(树皮煤)的热解失重特征进行了对比研究,并结合工业分析和元素分析结果,讨论了树皮体的化学性质。研究表明:随着升温速率的增加,树皮体、镜质体和树皮煤的TG和DTG曲线均不同程度的向右侧高温区移动,最大失重速率相应减小,升温速率对树皮体的DTG曲线变化影响较大。尽管使用的升温速率不同,而树皮体的DTG曲线峰形均具有窄而尖的特点,说明树皮体的受热变化比较剧烈。同时,树皮体的总失重量均大于镜质体和树皮煤。  相似文献   
23.
This investigation studied the coalcrete, a new supporting material produced by jet grouting (JG) for supporting surrounding coal seams. For support design, the unconfined compressive strength (UCS) of the coalcrete is an essential parameter to evaluate the jet grouting effect in coal mines. In this study, an intelligent technique was proposed for predicting the UCS of the coalcrete by combining back propagation neural network (BPNN) and beetle antennae search (BAS). The architecture of BPNN was first tuned by BAS, and then, the optimized BPNN-BAS model was subsequently used for nonlinear relationship modeling. Several crucial influencing variables including water-cement ratio, coal-grout ratio, and curing time were selected as the inputs. By combining these variables, 360 coalcrete samples were prepared in a controlled laboratory environment and tested for establishing the dataset. The results demonstrate that BAS can tune the BPNN architecture more efficiently compared with random selection. Moreover, in comparison with multiple regression (MLR) and logistic regression (LR), and support vector machine (SVM), the optimized BPNN-BAS model is more reliable and accurate for predicting coalcrete strength. Sensitivity analysis (SA) was used to obtain the variable importance, and the results demonstrate that curing time affects the UCS of the coalcrete most strongly, followed by water-cement ratio and coal-grout ratio. The success of this study provides an accurate and brief approach to coalcrete strength prediction.  相似文献   
24.
Many studies have defined the interrelationships between climate, forest disturbance, and runoff at small scales (<100 km2), but few have translated these relationships to large watersheds (>500 km2). In this study, we explore the relationship between climate, extreme forest fire seasons, mountain pine beetle (MPB) outbreaks, and runoff in eight large watersheds within the Fraser and Peace drainage basins in British Columbia (BC), Canada from 1981–2019. Using a climate index based on precipitation and air temperature anomalies, we find extreme forest fire seasons (those that burned >5% of a watershed's area) are most likely to occur when a warm/dry summer is preceded by multiple seasons of cool/wet conditions. Using the climate suitability class (CSC) model to explore the relationship between climate and MPB outbreaks, we validate previous findings that lower-than-average precipitation, warm growing season temperatures, and lack of extremely cold temperatures during winter are connected to MPB outbreaks within central BC. However, the CSC model needs improvements to accurately assess MPB suitability in northern watersheds that are located outside the model's calibration region, either through weighted variables or lower degree day thresholds. Minimal runoff response occurs from these forest disturbances, with the most prominent runoff change being related to the 2014 fire season in the Osilinka and Mesilinka watersheds. The limited effects of forest disturbance on annual runoff are likely related to large watershed sizes, low percentages of disturbed area in some study watersheds and post-MPB forest dynamics. These results provide valuable insight into the interrelationships of climate, forest disturbance and runoff in large Canadian boreal forested watersheds.  相似文献   
25.
Because groundwater recharge in dry regions is generally low, arid and semiarid environments have been considered well-suited for long-term isolation of hazardous materials (e.g., radioactive waste). In these dry regions, water lost (transpired) by plants and evaporated from the soil surface, collectively termed evapotranspiration (ET), is usually the primary discharge component in the water balance. Therefore, vegetation can potentially affect groundwater flow and contaminant transport at waste disposal sites. We studied vegetation health and ET dynamics at a Uranium Mill Tailings Radiation Control Act (UMTRCA) disposal site in Shiprock, New Mexico, where a floodplain alluvial aquifer was contaminated by mill effluent. Vegetation on the floodplain was predominantly deep-rooted, non-native tamarisk shrubs (Tamarix sp.). After the introduction of the tamarisk beetle (Diorhabda sp.) as a biocontrol agent, the health of the invasive tamarisk on the Shiprock floodplain declined. We used Landsat normalized difference vegetation index (NDVI) data to measure greenness and a remote sensing algorithm to estimate landscape-scale ET along the floodplain of the UMTRCA site in Shiprock prior to (2000–2009) and after (2010–2018) beetle establishment. Using groundwater level data collected from 2011 to 2014, we also assessed the role of ET in explaining seasonal variations in depth to water of the floodplain. Growing season scaled NDVI decreased 30% (p < .001), while ET decreased 26% from the pre- to post-beetle period and seasonal ET estimates were significantly correlated with groundwater levels from 2011 to 2014 (r2 = .71; p = .009). Tamarisk greenness (a proxy for health) was significantly affected by Diorhabda but has partially recovered since 2012. Despite this, increased ET demand in the summer/fall period might reduce contaminant transport to the San Juan River during this period.  相似文献   
26.
Arguing that community-based assessments of vulnerability to climate change are congruent with the scale at which policy action takes place, this paper presents an assessment of vulnerability conducted in forest-based communities surrounded by a catastrophic outbreak of forest disease. Our assessment includes measures of several dimensions of vulnerability, developed using an interdisciplinary and participatory research process. We find that for some communities vulnerability represents a high level of economic risk, while for others risk is exacerbated by institutional limitations. We also find that community perceptions of risk and bio-physical assessments differ widely for communities anticipating future outbreaks of disease.  相似文献   
27.
Evan Pugh  Eric Gordon 《水文研究》2013,27(14):2048-2060
In regions of western North America with snow‐dominated hydrology, the presence of forested watersheds can significantly influence streamflow compared to areas with other vegetation cover types. Widespread tree death in these watersheds can thus dramatically alter many ecohydrologic processes including transpiration, canopy solar transmission and snow interception, subcanopy wind regimes, soil infiltration, forest energy storage and snow surface albedo. One of the more important causes of conifer tree death is bark beetle infestation, which in some instances will kill nearly all of the canopy trees within forest stands. Since 1996, an ongoing outbreak of bark beetles (Coleoptera: Scolytidae) has caused widespread mortality across more than 600,000 km2 of coniferous forests in western North America, including numerous Rocky Mountain headwaters catchments with high rates of lodgepole pine (Pinus contorta) mortality from mountain pin beetle (Dendroctonous ponderosae) infestations. Few empirical studies have documented the effects of MPB infestations on hydrologic processes, and little is known about the direction and magnitude of changes in water yield and timing of runoff due to insect‐induced tree death. Here, we review and synthesize existing research and provide new results quantifying the effects of beetle infestations on canopy structure, snow interception and transmission to create a conceptual model of the hydrologic effects of MPB‐induced lodgepole pine death during different stages of mortality. We identify the primary hydrologic processes operating in living forest stands, stands in multiple stages of death and long‐dead stands undergoing regeneration and estimate the direction of change in new water yield. This conceptual model is intended to identify avenues for future research efforts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
28.
A field study was carried out in the spring and summer of 2003 (2 months each), to assess the efficiency of alternative exposure modes of biological monitors – lichen biomass and tree-bark biomass – together with prospective, non-biological monitors – cellulose acetate and Chelex-100 resin – versus conventional transplants of the same species. After exposure to the marine atmosphere of Sines (SW Portugal), saline elements (Cl, Na, K, Mg) contents were determined in all samples by instrumental neutron activation analysis (INAA). Manganese was used as the crustal reference for data normalisation. As a whole, the results pointed to a consistent elemental accumulation regardless of the season (spring, summer), and to some fair reproducibility of data. There were good correlations between Cl and Na in terms of both raw and normalised data, for either the biomonitors or the cellulose acetate. Elemental ratios generally agreed with the average relative composition of bulk seawater. The degree of association between Cl and Na appeared rather unaffected by the normalisation procedure, which suggests that (i) both elements most likely had an almost exclusive marine origin; and (ii) accounting for crustal inputs via Mn did not bias the results. Other sources than the sea-spray might contribute to the Mg levels, though, as only Mn-normalised data showed intrinsic (correlation) and extrinsic (ratio) consistency. The performance of the Chelex-100 resin was rather disappointing when compared to the other monitors.  相似文献   
29.
Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage.  相似文献   
30.
A rare archaic beetle, Barbaticupes combertiae n. gen. n. sp. (Insecta: Coleoptera: Archostemata: Cupedidae) is described from mid-Cretaceous burmite from northern Myanmar. This beetle's distinctive form includes dense setae (small hairs) and protuberances on the head and merging rows of window cells on the elytra (wing cases). It is the first true or typical reticulated beetle (cupedine) to be found in Burmese amber displaying male genitalia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号