首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   6篇
地球物理   16篇
地质学   5篇
自然地理   4篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   3篇
  1999年   1篇
  1997年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
Bankfull discharge is identified as an important parameter for studying river morphology, sediment motion, flood dynamics and their ecological impacts. In practice, the determination of this discharge and its hydrological characteristics is not easy, and a choice has to be made between several existing methods. To evaluate the impact of the choice of methods, five bankfull elevation definitions and four hydrological characterizations (determination of duration and frequency of exceedance applied to instantaneous or mean daily data) were compared on 16 gravel‐bed river reaches located in France (the catchment sizes vary from 10 km2 to 1700 km2). The consistency of bankfull discharge estimated at reach scale and the hydraulic significance of the five elevation definitions were examined. The morphological definitions (Bank Inflection, Top of Bank) were found more relevant than the definitions based on a geometric criterion. The duration of exceedance was preferred to recurrence intervals (partial duration series approach) because it is not limited by the independency of flood events, especially for low discharges like those associated with the Bank Inflection definition. On average, the impacts of the choice of methods were very important for the bankfull discharge magnitude (factor of 1·6 between Bank Inflection and Top of Bank) and duration of exceedance or frequency (respectively a factor 1·8 and 1·9 between mean daily and instantaneous discharge data). The choice of one combination of methods rather than another can significantly modify the conclusions of a comparative analysis in terms of bankfull discharge magnitude and its hydrological characteristics, so that one must be cautious when comparing results from different studies that use different methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
22.
A series of laboratory experiments demonstrates that riparian vegetation can cause a braided channel to self‐organize to, and maintain, a dynamic, single‐thread channel. The initial condition for the experiments was steady‐state braiding in non‐cohesive sand under uniform discharge. From here, an experiment consisted of repeated cycles alternating a short duration high flow with a long duration low flow, and uniform dispersal of alfalfa seeds over the bed at the end of each high flow. Plants established on freshly deposited bars and areas of braidplain that were unoccupied during low flow. The presence of the plants had the effect of progressively focusing the high flow so that a single dominant channel developed. The single‐thread channel self‐adjusted to carry the high flow. Vegetation also slowed the rate of bank erosion. Matching of deposition along the point bar with erosion along the outer bend enabled the channel to develop sinuosity and migrate laterally while suppressing channel splitting and the creation of new channel width. The experimental channels spontaneously reproduced many of the mechanisms by which natural meandering channels migrate and maintain a single dominant channel, in particular bend growth and channel cutoff. In contrast with the braided system, where channel switching is a nearly continuous process, vegetation maintained a coherent channel until wholesale diversion of flow via cutoff and/or avulsion occurred, by which point the previous channel tended to be highly unfavorable for flow. Thus vegetation discouraged the coexistence of multiple channels. Varying discharge was key to allowing expression of feedbacks between the plants and the flow and promoting the transition from braiding to a single‐thread channel that was then dynamically maintained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
23.
徐玲玲  甄峰  蒋红樱 《冰川冻土》2017,39(2):416-420
造床流量是河床形态塑造的关键因素,也是河道整治、水工计算设计的主要参数。根据实测水文数据,分别采用三种常用造床流量计算方法,对长江下游镇江河段的造床流量进行求解计算,结果分析对比,表明Makovieve法更适用于镇江段造床流量的计算。基于算例结果建立长江下游河段造床流量经验方法,精度分析表明经验方法具有较高的精度。给出了推荐值。建立了适用于镇江河段造床流量计算的经验公式。  相似文献   
24.
张金良  鲁俊 《水科学进展》2021,32(2):192-200
黄河上游内蒙古冲积性河道凌汛问题突出,研究河道冲淤演变与凌情响应机制可为该河段防凌减灾提供技术支持。根据内蒙古河段凌情、河道冲淤演变资料,分析凌情变化表征指标及与之密切相关的河道冲淤演变特征指标,研究河道冲淤演变特征指标与凌情变化表征指标的响应关系。结果表明:河道冲淤演变的特征指标平滩流量与凌情表征指标冰下过流能力、槽蓄水增量关系密切,冰下过流能力为平滩流量的1/5左右,随着平滩流量减小而减小,而槽蓄水增量随着平滩流量的减小而增大,有利内蒙古河段防凌的平滩流量宜不小于2 000 m3/s,槽蓄水增量宜不超过14亿m3。本研究成果可为内蒙古河段冰凌灾害防治提供参考。  相似文献   
25.
This paper presents a study on the characteristics of multiple time scales of bankfull discharge and its delayed response to changes of flow conditions using continuous wavelet analysis for data from selected hydrological stations in the Yellow River basin. Results showed that bankfull discharge series had one or two dominant time scales. For example, the Huayuankou station in the lower reach of the Yellow River had two dominant time scales of 19-20 years and 545 years. The dominant time scales of the bankfull discharge series were generally consistent with the dominant time scales of water discharge and sediment concentration series, indicating that the channel morphology inherits the characteristics of the hydrological system in terms of multiple time scales. In addition, the wavelet coefficients of the bankfull discharge series had a phase difference in relation to those of the sediment concentration series, with a delay time that varied from 3 to 16 years at different sites. This delay time or relaxation time is a result of the delayed response of bankfull discharge to flow conditions, which was significant for channel adjustments in response to changes of flow conditions. The findings of the multiple time scales and the delayed response are of importance for further study of channel morphology of fluvial systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号