全文获取类型
收费全文 | 373篇 |
免费 | 32篇 |
国内免费 | 21篇 |
专业分类
测绘学 | 7篇 |
大气科学 | 16篇 |
地球物理 | 94篇 |
地质学 | 129篇 |
海洋学 | 2篇 |
天文学 | 1篇 |
综合类 | 8篇 |
自然地理 | 169篇 |
出版年
2023年 | 6篇 |
2022年 | 14篇 |
2021年 | 21篇 |
2020年 | 27篇 |
2019年 | 31篇 |
2018年 | 22篇 |
2017年 | 13篇 |
2016年 | 14篇 |
2015年 | 18篇 |
2014年 | 19篇 |
2013年 | 21篇 |
2012年 | 23篇 |
2011年 | 19篇 |
2010年 | 16篇 |
2009年 | 15篇 |
2008年 | 8篇 |
2007年 | 21篇 |
2006年 | 18篇 |
2005年 | 13篇 |
2004年 | 15篇 |
2003年 | 14篇 |
2002年 | 15篇 |
2001年 | 10篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 7篇 |
1997年 | 7篇 |
1996年 | 4篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1989年 | 2篇 |
1985年 | 1篇 |
排序方式: 共有426条查询结果,搜索用时 15 毫秒
41.
This paper describes and tests two models for estimating net radiation(or the radiation balance)on sloping surfacesof alpine environments.They are an empirical method based on the linear relationship between net radiation and globalsolar radiation and a flux-by-flux method involving the estimation of all the individual components of radiation budgetindependently.The results show that the empirical method is capable of predicting hourly net radiation on sloping sur-faces to within about±53 W m~(-2) under all sky conditions.During clear sky conditions,it could predict net radiation onslopes to within±58 W m~(-2) or 16% of the measured values.The flux-by-flux method,although it did not perform aswell as the empirical method,performed adequately and could give estimates of net radiation on slopes with root meansquare error of less than 74 W m~(-2)(20%)and a mean bias error of 27 W m~(-2)(7%). 相似文献
42.
基于GIS的怒江峡谷人居环境容量评价——以泸水县为例 总被引:2,自引:0,他引:2
本文选取坡度、坡向、海拔、土地利用、交通、水资源、土壤质量等作为评价指标,利用GIS的叠置分析、缓冲区分析等空间分析技术对怒江峡谷区的泸水县人居环境适宜性进行了定量综合评价分析。评价结果表明,泸水县人居环境适宜区主要以带状形式分布在河流周围,其他区域只有零星分布,与泸水县人口分布的空间格局相吻合。泸水县人居环境状况与经济发展水平呈现明显的正相关性,人居环境评价值与各乡镇农民人均纯收入相关系数达到0.89,与各行政村农民人均纯收入的相关系数达到0.956。此外,本文还分析了泸水县各个乡镇的人居环境容量,表明泸水县已难以承载现有的人口。 相似文献
43.
Tao Zhen Shen ChengDe Gao QuanZhou Sun YanMin Yi WeiXi Li YingNian 《中国科学D辑(英文版)》2007,50(7):1103-1114
High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application
of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of
years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow
ecosystem of the Tibetan Plateau will be changed, which needs further research.
Supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40471120 and 40473002) and the Guangdong
Provincial Natural Science Foundation of China (Grant No. 06300102) 相似文献
44.
MAURI S. PELTO 《水文研究》1996,10(9):1173-1180
From 1985 to 1993, the mean summer temperature was 1.1°C above the long-term mean and the mean winter precipitation was 11% below the long-term mean at the eight Washington State Cascade Mountain weather stations. The effect of this climate fluctuation on glacier and alpine runoff has been examined in five North Cascade basins. From 1985 to 1993 the two basins with less than 1% glacier-covered area experienced mean 1 July to 30 September (late summer) runoff 36% below the long-term mean. The three moderately glaciated basins (3, 6 and 14% glaciated, respectively) experienced a 13% decline in late summer runoff for the same period. A significant change in late summer runoff has occurred in the North Cascades and this change is less pronounced in glacier basins. The cause of the change is decreased winter precipitation and earlier onset of spring melting of the alpine snowpack, followed by above average summer temperatures and an earlier summer melt of alpine snowpack. The smaller decrease in runoff in glacial basins is due to increased ablation and consequent glacier runoff due to high summer temperatures. However, glacier retreat is also reducing glacier runoff. 相似文献
45.
利用黄河源区玛曲观测站2016年涡动相关系统和微气象梯度塔观测资料,分析了高寒草地 大气间水热交换通量的特征。结果表明:夜间地表各通量值很小,净辐射和感热通量为负值,潜热通量的值较小但始终为正。日出后随着太阳辐射和地表加热作用各通量迅速增大,在14时左右达到峰值。暖季(6—8月)夜间感热通量占净辐射的比例(H/Rn)高于感潜通量占净辐射的比例(LE/Rn),日出后LE/Rn开始升高而H/Rn减小,日间LE/Rn大于H/Rn。冷季(12月—次年2月)H/Rn始终大于LE/Rn,感热通量在冷季的能量分配中占据主导地位。暖季LE/Rn、H/Rn均随土壤温度升高而升高。冷季H/Rn与5 cm深度土壤温度表现出了更为明显的二次关系,随着温度升高先降低后升高,当温度小于-7 ℃时H/Rn降低,大于-6 ℃时H/Rn增大。暖季H/Rn随着土壤湿度增大先降低后升高,LE/Rn先升高后降低。在0—1.5 kPa,暖季饱和水汽压差与LE/Rn、H/Rn均呈线性关系,并随着饱和水汽压差增大,LE/Rn增大而H/Rn减小;1.5 kPa之后,LE/Rn、H/Rn变化特征均保持其原有趋势。 相似文献
46.
季节性放牧对黄河源区高寒草甸植被耗水量及水分利用效率的影响 总被引:1,自引:0,他引:1
研究季节性放牧对植被耗水量、水分利用效率的影响,是探索如何提高高寒草甸水源涵养能力的重要内容之一。以青藏高原三江源高寒草甸季节性放牧样地与自然放牧样地为研究对象,分析了季节性放牧和自然放牧条件下高寒草甸植被耗水量、水分盈亏量、水分利用效率(WUE)的动态变化及其与环境因素的关系。结果表明:在植被生长季(5-9月),季节性放牧样地和自然放牧样地植被耗水量在5月开始增加, 7月达最高,分别为160.94 mm和145.96 mm,季节性放牧样地植被总耗水量(395.52 mm)比自然放牧样地(348.14 mm)高13.61%。生长季平均来看,季节性放牧样地和自然放牧样地5-9月水分正盈余,分别为13.58 mm和70.96 mm,但在植物生长旺季(8月)略有亏缺。季节性放牧样地和自然放牧样地植被耗水量均与降水量呈弱的正相关关系。季节性放牧样地植被地上净初级生产量(ANPP)、地下净初级生产量(BNPP)和总的净初级生产量(NPP)比自然放牧样地分别高32.54 g·m-2、5.96 g·m-2、38.50 g·m-2,季节性放牧样地ANPP的水分利用效率(WUE)比自然放牧样地高53.85%,而BNPP、NPP的WUE比自然放牧样地分别低13.06%和9.97%。这表明,季节性放牧可提高植被生产量和耗水量,但对高寒草甸WUE的影响因放牧方式不同导致地上、地下生物量分配格局不同而有所差异。 相似文献
47.
The response in floodplain respiration of an alpine river to experimental inundation under different temperature regimes 下载免费PDF全文
Tatjana Simčič Nataša Mori Christian Hossli Christopher T. Robinson Michael Doering 《水文研究》2015,29(26):5438-5450
The respiratory potential [i.e. electron transport system activity (ETSA)] of soils and sediments from five floodplain habitats (channel, gravel, islands, riparian forest and grassland) of the Urbach River, Switzerland, and actual respiration rate (R) of the same samples exposed to experimental inundation were measured. Measurements were carried out at three incubation temperatures (4°C, 12°C and 20°C), and ETSA/R ratios (i.e. exploitation of the overall metabolic capacity) were investigated to better understand the effects of temperature and inundation on floodplain functional heterogeneity. Furthermore, ETSA/R ratios obtained during experimental inundation were compared with ETSA/R ratios from field measurements to investigate the exploitation in total metabolic potential at different conditions. Lowest ETSA and R were measured in samples from channel and gravel habitats, followed by those from islands. Substantially higher values were measured in soils from riparian forest and grassland. Both ETSA and R increased with increasing temperature in samples from all habitats, while the ETSA/R ratio decreased because of a rapid response in microbial community respiration to higher temperatures. The metabolic capacity exploitation (i.e. ETSA/R) during experimental inundation was lowest in predominantly terrestrial samples (riparian forest and grassland), indicating the weakest response to wetted conditions. Comparison of experimentally inundated and field conditions revealed that in rarely flooded soils, the metabolic capacity was less exploited during inundation than during non‐flooded conditions. The results suggest high sensitivity in floodplain respiration to changes in temperature and hydrological regime. ETSA/R ratios are considered good indicators of changes in metabolic activity of floodplain soils and sediments, and thus useful to estimate the impact of changes in hydrological regime or to evaluate success of floodplain restoration actions. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
48.
Nikolaos P. Nikolaidis Vicki S. Nikolaidis Jerald L. Schnoor 《Aquatic Sciences - Research Across Boundaries》1991,53(4):330-345
Monte-Carlo simulations were used to assess the extent of shortterm alkalinity depressions occuring in Sierra Nevada lakes due to acidic deposition events. The Episodic Event Model (EEM) was used to simulate spring snowmelt events. Snow course data, precipitation data and lake acidification surveys were used to derive values for the EEM parameters. Spring snowmelt events were shown to have great impacts on the water quality of Sierran lakes. Lakes are likely to be most affected by the early-spring snowmelt event because the epilimnion depth is at a minimum, which indicates minimum dilution. Under annual average loading conditions, no Sierran lake has been reported as acidic although 29% of the lakes have alkalinities less than 40 µeq/L indicating a sensitivity to acidification. In simulations of early-spring snowmelt events, using present-day acidic loading conditions, it was estimated 79% ± 9% of the lakes would experience shortterm lake alkalinity depressions to levels less than 40 µeq/L. The results provided by the model simulations are valuable in establishing upper and lower limits on the extent of possible episodic acidification to lake-resources-at-risk. The most critical parameters controlling the magnitude of lake alkalinity depressions during snowmelt episodic events are a) the lake area to watershed area ratio — a measure of input loading, and b) the epilimnion volume — a measure of dilution and mixing. 相似文献
49.
PEIZhiyong OUYANGHua ZHOUCaiping XUXingliang 《地理学报(英文版)》2003,13(4):429-437
In this paper, the CO2 concentrations profile from 1.5 m depth in soil to 32 m height in atmosphere were measured from July 2000 to July 2001 in an alpine grassland ecosystem located in the permafrost area on the Tibetan Plateau, which revealed that CO2 concentrations varied greatly during this study period. Mean concentrations during the whole experiment in the atmosphere were absolutely lower than the CO2 concentrations in soil, which resulted in CO2 emissions from the alpine steppe soil to the atmosphere. The highest CO2 concentration was found at a depth of 1.5 m in soil while the lowest CO2 concentration occurred in the atmosphere. Mean CO2 concentrations in soil generally increased with depth. This was the compositive influence of the increasing soil moistures and decreasing soil pH, which induced the increasing biological activities with depth. Temporally, the CO2 concentrations at different layers in air remained a more steady state because of the atmospheric turbulent milking. During the seasonal variations, CO2 concentrations at surface soil interface showed symmetrical patterns, with the lowest accumulation of CO2 occurring in the late winter and the highest CO2 concentration in the growine seasons. 相似文献
50.
In this paper, the CO2 concentrations profile from 1.5 m depth in soil to 32 m height in atmosphere were measured from July 2000 to July 2001 in an alpine grassland ecosystem located in the permafrost area on the Tibetan Plateau, which revealed that CO2 concentrations varied greatly during this study period. Mean concentrations during the whole experiment in the atmosphere were absolutely lower than the CO2 concentrations in soil, which resulted in CO2 emissions from the alpine steppe soil to the atmosphere. The highest CO2 concentration was found at a depth of 1.5 m in soil while the lowest CO2 concentration occurred in the atmosphere. Mean CO2 concentrations in soil generally increased with depth. This was the compositive influence of the increasing soil moistures and decreasing soil pH, which induced the increasing biological activities with depth. Temporally, the CO2 concentrations at different layers in air remained a more steady state because of the atmospheric turbulent milking. During the seasonal variations, CO2 concentrations at surface soil interface showed symmetrical patterns, with the lowest accumulation of CO2 occurring in the late winter and the highest CO2 concentration in the growing seasons. 相似文献