首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1071篇
  免费   174篇
  国内免费   305篇
大气科学   3篇
地球物理   102篇
地质学   1235篇
海洋学   143篇
综合类   35篇
自然地理   32篇
  2024年   8篇
  2023年   19篇
  2022年   26篇
  2021年   36篇
  2020年   37篇
  2019年   38篇
  2018年   40篇
  2017年   45篇
  2016年   51篇
  2015年   48篇
  2014年   59篇
  2013年   77篇
  2012年   64篇
  2011年   81篇
  2010年   69篇
  2009年   76篇
  2008年   67篇
  2007年   74篇
  2006年   70篇
  2005年   60篇
  2004年   52篇
  2003年   41篇
  2002年   58篇
  2001年   40篇
  2000年   52篇
  1999年   47篇
  1998年   36篇
  1997年   29篇
  1996年   19篇
  1995年   18篇
  1994年   10篇
  1993年   29篇
  1992年   13篇
  1991年   11篇
  1990年   7篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   13篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1975年   1篇
  1954年   1篇
排序方式: 共有1550条查询结果,搜索用时 390 毫秒
51.
为了解准噶尔盆地南缘硫磺沟地区中侏罗统头屯河组砂岩成岩-流体演化与铀成矿响应,进而客观评价其成矿潜力。通过光薄片鉴定、X衍射、扫描电镜分析得出:目的层主要为岩屑细砂岩,依次经历了浅埋藏、深埋藏和表生-热液成岩阶段,遭受较强的机械压实、胶结及溶蚀作用。其黏土矿物以高岭石为主,碳酸盐矿物有细亮晶和泥晶两类,硅质胶结微弱,局部见细晶黄铁矿及其褐铁矿氧化产物。成岩环境可能经历了由酸性到弱碱性再到酸性,由同生期氧化-浅埋期还原-短暂抬升期氧化还原过渡-缓慢沉降期还原增强-快速抬升期氧化的演化过程。砂岩中存在较多油气包裹体;酸解总烃为5.72~449.14 μL/kg,以CH4为主;方解石脉δ13CV-PDB为-25‰~-6.7‰,δ18OV-SMOW为11.1‰~18.9‰;结合野外调查认为目的层存在一期中等偏弱的后生油气侵位,从而影响了砂体的Eh及pH值。以上成岩过程及烃类流体活动使得目的层早期形成了小型层间氧化带型铀矿并得以局部保存,晚期形成了一定规模的地表潜水氧化带型铀矿体。  相似文献   
52.
The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geological characteristics and origin of the tight oil accumulations in the Chang 6 member of the Upper Triassic Yanchang Formation in the Shanbei area based on over 50,000 petrological,source-rock analysis,well logging and production data.The tight oil accumulation of the Chang 6 member is distributed continuously in the basin slope and the centre of the basin.The oilwater relationships are complex.Laumontite dissolution pores are the most important storage spaces,constituting 30%-60% of total porosity and showing a strong positive relationship with oil production.The pore-throat diameter is less than 1 μm,and the calculated critical height of the oil column is much larger than the tight sand thickness,suggesting that the buoyancy was probably of limited importance for oil migration.The pressure difference between the source rocks and sandstone reservoirs is inferred to have provided driving force for hydrocarbon migration.Two factors of source-reservoir configuration and laumontite dissolution contributed to the formation of the Chang 6 tight oil accumulations.Intense hydrocarbon generation and continuous sand bodies close to the hydrocarbon kitchen are the foundation for the large-scale oil distribution.Dissolution of feldspar-laumontite during the process of organic matter evolution generated abundant secondary pores and improved the reservoir quality.  相似文献   
53.
系统岩心观察和高密度薄片鉴定等分析测试资料研究结果显示,济阳坳陷沙三下-沙四上泥页岩成分组成及构造类型主要受沉积作用控制,岩石结构特征主要受成岩作用控制。根据泥页岩中方解石成因及重结晶程度,结合岩石成分及构造特征,将济阳坳陷沙三下-沙四上泥页岩划分为沉积主控型、沉积-成岩双控型及成岩主控型三大成因相。沉积主控型分布最为广泛,岩相类型多样,构造特征反映成因环境;沉积-成岩双控型主要见于纹层状岩相,由泥质纹层与显晶粒状方解石纹层互层构成;成岩主控型以柱状、柱纤状方解石垂直层面呈脉状、透镜状产出为特征。成岩主控型和沉积-成岩双控型泥页岩与页岩油气关系密切,是重要的有利成因相类型。  相似文献   
54.
The Esino Limestone of the western Southern Alps represents a differentiated Ladinian-Lower Carnian (?) carbonate platform comprised of margin, slope and peritidal inner platform facies up to 1000 m thick. A major regional subaerial exposure event lead to coverage by another peritidal Lower Carnian carbonate platform (Breno Formation). Multiphase dolomitization affected the carbonate sediments. Petrographic examinations identified at least three main generations of dolomites (D1, D2, and D3) that occur as both replacement and fracture-filling cements. These phases have crystal-size ranges of 3–35 μm (dolomicrite D1), 40–600 μm (eu-to subhedral crystals D2), and 200 μm to 5 mm (cavity- and fracture-filling anhedral to subhedral saddle dolomite D3), respectively.The fabric retentive near-micritic grain size coupled with low mean Sr concentration (76 ± 37 ppm) and estimated δ18O of the parent dolomitizing fluids of D1 suggest formation in shallow burial setting at temperature ∼ 45–50 °C with possible contributions from volcanic-related fluids (basinal fluids circulated in volcaniclastics or related to volcanic activity), which is consistent with its abnormally high Fe (4438 ± 4393 ppm) and Mn (1219 ± 1418 ppm) contents. The larger crystal sizes, homogenization temperatures (D2, 108 ± 9 °C; D3, 111 ± 14 °C) of primary two-phase fluid inclusions, and calculated salinity estimates (D2, 23 ± 2 eq wt% NaCl; D3, 20 ± 4 eq wt% NaCl) of D2 and D3 suggest that they formed at later stages under mid-to deeper burial settings at higher temperatures from dolomitizing fluids of higher salinity, which is supported by higher estimated δ18O values of their parent dolomitizing fluids. This is also consistent with their high Fe (4462 ± 4888 ppm; and 1091 ± 1183 ppm, respectively) and Mn (556 ± 289 ppm and 1091 ± 1183 ppm) contents, and low Sr concentrations (53 ± 31 ppm and 57 ± 24 ppm, respectively).The similarity in shale-normalized (SN) REE patterns and Ce (Ce/Ce*)SN and La (Pr/Pr*)SN anomalies of the investigated carbonates support the genetic relationship between the dolomite generations and their calcite precursor. Positive Eu anomalies, coupled with fluid-inclusion gas ratios (N2/Ar, CO2/CH4, Ar/He), high F concentration, high F/Cl and high Cl/Br molar ratios suggest an origin from diagenetic fluids circulated through volcanic rocks, which is consistent with the co-occurrence of volcaniclastic lenses in the investigated sequence.  相似文献   
55.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   
56.
Petrographic, petrophysical and fracture analyses were carried out on middle Cretaceous platform carbonates of the southern Apennines (Italy) that represent an outcrop analogue of the Val d’Agri and Tempa Rossa reservoirs of the Basilicata region. The studied outcrops, which are made of interlayered limestones and dolomites of inner platform environment, were selected to study the impact of dolomitization on reservoir properties and the control of dolomite texture on fracture development. Two types of dolomites – both formed during very early diagenesis – were found interlayered, at a metre scale, with micrite-rich limestones (mainly mudstones and wackestones). Dolomite A is fine-to medium crystalline and makes non-planar mosaics. Dolomite B is coarse-crystalline and makes planar-s and planar-e mosaics. The intercrystalline space of the planar-e subtype of dolomite B is either open or filled by un-replaced micrite or by late calcite or saddle dolomite cement. Dolomite A and dolomite B have similar average porosities of 3.7 and 3.1% respectively, which are significantly higher than the average porosity of limestones (1.4%). Their poro-perm relationships are similar, with the notable exception of planar-e type B dolomites, which generally display higher permeability values.The intensity of top bounded fractures is distinctly lower in coarse-crystalline dolomites than in fine-crystalline dolomites and limestones, both at the macro- and the micro-scale. On the other hand neither lithology (i.e. limestone vs. dolomite) nor dolomite crystal size control the intensity of perfect bed-bounded fractures, which is strictly controlled by the fracture layer thickness.Our results provide information that could be used as guidance for the characterization and modelling of fractured carbonate reservoirs made of interlayered limestones and dolomites.  相似文献   
57.
Cr-spinel bearing wehrlite rocks of Bangriposi are found within the multiply deformed metasedimentary rocks of Singhbhum Group belonging to North Singhbhum Mobile Belt of eastern India. Detailed mineralogical and geochemical studies reveal that these rocks have suffered a two-stage alteration involving a deeper level modal and cryptic metasomatism and a subsequent shallower depth pervasive hydrothermal alteration. Cryptic metasomatism is defined by elevated LREE contents of the wehrlite and its clinopyroxne grains. Metasomatism induced changes in the modal mineralogy of the rocks include the absence of primary orthopyroxene grains, presence of secondary diopside-phlogopite(now present as vermiculite) defining disequilibrium reaction textures and secondary orthopyroxene rims around serpentinized olivine. The mineralogical and geochemical changes due to the metasomatic event present a contrasting picture in regard to the metasomatic history of the rocks. Possible scenarios involving a single stage or multiple stage metasomatism events have been discussed while explaining the metasomatic reactions that took place. An attempt has been made to estimate the REE concentrations of the final equilibrating melt from REE contents of clinopyroxene grains of the wehrlite. The possibility of the LREE-enriched equilibrating melt of the wehrlite rocks(the deeper level metasomatic agent) being similar to residual melts from the E-MORB type parental melts of nearby gabbro suite has been ruled out by geochemical modeling. REE abundance patterns of several natural enriched melts have been compared with REE pattern of calculated LREE-enriched equilibrating melt of the wehrlite and most resemblance has been observed with calcic and potassic melts. It is therefore suggested that the Cr-spinel bearing wehrlite rocks of Bangriposi has been affected by a calcio-potassic melt in deeper level, prior to the shallow level serpentinization event.  相似文献   
58.
《Sedimentology》2018,65(6):1827-1858
Dedolomitization is a common diagenetic process in shallow burial environments and is often associated with sulphates in mixed carbonate‐evaporite successions. In these settings, elevated Ca2+/Mg2+ ratios necessary for dedolomitization result from the dissolution of sulphate phases by the incursion of undersaturated groundwater. Reported dedolomite textures from other studies are varied, but the most prevalent is a rhombic texture interpreted to result from the partial to complete pseudomorphic replacement of secondary dolomite rhombs formed in the burial diagenetic realm. In this study of primary cryptocrystalline to finely crystalline dolomicrites in the Prairie Evaporite Formation of north‐eastern Alberta, dedolomitization has resulted in sutured to loosely packed mosaics of dedolomite that range from subhedral to distinctly euhedral (rhombic) crystal fabrics; however, no prior aggrading neomorphism producing dolomite rhombs is evident in the precursor dolomicrites. Non‐pseudomorphic dedolomitization of the dolomicrites results in textures that include rhombic dedolomite crystals with cloudy cores comprising remnant dolomicrite and clear rims. These textures are similar to those observed in the pseudomorphic dedolomitization of secondary dolomite rhombs. The Prairie Evaporite Formation of north‐eastern Alberta has experienced extensive karstification near the erosional margin of the sedimentary succession. Dedolomitization of dolomicrites occurs in marker beds within the Prairie Evaporite succession associated with evaporite karstification. Along with stratigraphic and petrographic considerations, stable isotope results support the interpretation of a shallow dedolomitization event influenced by meteoric waters derived from the basin margin. Negative δ 18O and low δ 13C values (averages of −13·6‰VPDB and 0·5‰VPDB, respectively) of the dedolomite, compared with those of the primary dolomicrite (averages of −6·0‰VPDB and 1·2‰VPDB, respectively), point to isotopically light diagenetic fluids. These results show that rhombic dedolomite textures can form through shallow, non‐pseudomorphic dedolomitization of dolomicrites by meteoric fluids in the presence of sulphates, with resulting textures that are similar to the pseudomorphic dedolomitization of secondary dolomite rhombs.  相似文献   
59.
辽宁赛马碱性岩体早年因产铀矿而闻名,该岩体主要由响岩、霞石正长岩和异霞正长岩组成,其中铀、锆和稀土等元素矿化主要集中于异霞正长岩岩浆阶段。异性石是异霞正长岩中特征的锆-稀土矿物,主要分为两期,晚期异性石表现出更加富集Nb、REE等高场强元素的特点。早期异性石经历了一系列的热液蚀变,根据蚀变强弱程度,蚀变矿物组合可分为:(1)异性石+钠锆石+霓石±钠沸石;(2)异性石+钠锆石+锆石+钠沸石±霓石;(3)异性石假晶,假晶主要由残余异性石+钠锆石+锆石+钠沸石+霓石+钾长石+铈硅磷灰石组成。相比于岩浆锆石,蚀变组合中次生锆石具有富Ca、Al、Fe的特点,与异性石本身化学成分和流体性质密切相关。通过对异性石及其蚀变组合的精细矿物学研究,我们得知假晶的形成可能是异性石"溶解-再沉淀"的结果,致使假晶形成的流体至少包括:(1)占主导的富Na(±K)、Al、F的自交代流体;(2)少量晚期富Ca流体。假晶中次生锆石和铈硅磷灰石的结晶说明了Zr和REE等高场强元素的热液活动性,自交代碱性流体和富Ca流体在此过程中起到"搬运"和"提纯"的作用,这对认识碱性岩稀有、稀土成矿机制具有重要的指示意义。  相似文献   
60.
李圣  王国芝  李娜  刘定坤 《世界地质》2018,37(3):873-881
通过岩芯观察、测井和录井资料、铸体薄片观察,研究准中1区三工河组二段储层特征及致密化因素。研究表明,储层砂体发育于水下分流河道、河口砂坝和远沙坝;储集岩以长石岩屑砂岩、岩屑砂岩为主;储集空间以次生溶孔为主,含少量原生孔隙,为孔缝型储层。储层受原生沉积相和后生成岩作用改造的双重控制。强烈的压实作用、钙质胶结是导致储层致密的主要因素,后期深埋溶蚀则是储层得以改造的关键控制因素。优质储层主要发育于水下分流河道,表现为粗粒、弱压实、弱钙质胶结、强溶蚀微观特征。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号