When trying to improve gas productivity from unconventional sources a first aim is to understand gas storage and gas flow potential through the rock by investigating the microstructure, mineralogy and matrix porosity of unfractured shale. The porosity and mineralogy of the Mulgrave Shale member of the Whitby Mudstone Formation (UK) were characterized using a combination of microscopy, X-ray diffraction and gas adsorption methods on samples collected from outcrops. The Whitby Mudstone is an analogue for the Dutch Posidonia Shale which is a possible unconventional source for gas. The Mulgrave shale member of the Whitby Mudstone Formation can microstructurally be subdivided into a fossil rich (>15%) upper half and a sub-mm mineralogically laminated lower half. All clasts are embedded within a fine-grained matrix (all grains < 2 μm) implying that any possible flow of gas will depend on the porosity and the pore network present within this matrix. The visible SEM porosity (pore diameter > 100 nm) is in the order of 0.5–2.5% and shows a non-connected pore network in 2D. Gas adsorption (N2, Ar, He) porosity (pore diameters down to 2 nm) has been measured to be 0.3–7%. Overall more than 40% of the visible porosity is present within the matrix. Comparing the Whitby Mudstone Formation to other (producing) gas shales shows that the rock plots in the low porosity and high clay mineral content range, which could imply that Whitby Mudstone shales could be less favourable to mechanical fracturing than other gas shales. Estimated permeability indicates values in the micro-to nano-darcy range. 相似文献
This study investigated the adsorption and precipitation of phosphate by blast furnace slag (BFS) separately.
In order to evaluate the adsorption capacity of BFS, BFS was treated before its use by acid. The authors aim to develop a new porous carrier to adsorb simultaneously ammonium and phosphate from seawater under eutrophic conditions. The current paper deals with a promising new approach to improve the utilization of some industrial solid wastes such as BFS and zeolite synthesized from fly ash [ZFA(Fe)] by their solidification to cylindrical porous carriers using a hydrothermal hot-pressing (HHP) method.
Attempts to produce porous carriers using an arranged HHP method with different porosities (24%, 40% and 52% (v/v)) were carried out. Physical properties of carriers such as porosity, compressive strength and height have been investigated. Laboratory studies showed strong evidence that the porous carrier was very selective towards phosphate and ammonium. The results demonstrated the role of porosity in enhancing phosphate and ammonium adsorption by the increase of the surface area per weight. The estimates of the parameters and the correlation coefficients according to the Freundlich equations revealed that adsorption was related to the porosity of carriers and phosphate and ammonium were adsorbed well on the carriers having large porosity.
The results suggested that developing carrier with high porosity was a promising way to enhance nutrients adsorption. 相似文献
Results of a series of experiments(on the adsorption of divalent metal ions by dried alginic acid, Na and Ca alginates of different composition and block structure) conducted in this systematic study of the effects of the composition and structure of alginates on the static adsorption equilibrium of divalent metal ions indicate that the properties of alginate adsorption to divalent metal ions are highly different, depending not only on the cations used, but also on the form and structure of the alginates. There is close correlation between the adsorption properties and the structure of the alginates. The selectivity coefficient of Na alginate for Cd-Sr ion exchange tends to increase with the increase of the M/G ratio in alginate, whereas the adsorption capacity of Ca alginate for Cu~(2+) ion decrease with the increase of the G-block or the average length of the G-block ((?)_G) and the total adsorption capacity of alginic acid is found to vary in the same order as the F_(MM)(diad frequency) in alginate in 相似文献
Fly ash is the solid waste of thermal power plants where coal is used as fuel, and its management and utilization have been of environmental concern for decades. Since the technique of synthesizing zeolite from coal fly ash was introduced by Holler[1] (19… 相似文献
In this work, 8‐hydroxyquinoline is used as the active sites in cross‐linked chitosan beads with epichlorohydrin (CT‐8HQ). The CT‐8HQ material was shaped in bead form and used for heavy metal removal from aqueous solution. The study was carried out at pH 5.0 with both batch and column methods and the maximum adsorption capacity of metal ions by the CT‐8HQ was attained in 4 h in the batch experiment. The adsorption capacity order was: Cu2+ > Ni2+ > Zn2+ for both mono‐ and multi‐component systems with batch conditions. From breakthrough curves with column conditions, the adsorption capacity followed the order Cu2+ > Zn2+ > Ni2+ for both mono‐ and multi‐component systems. The CT‐8HQ beads maintained good metal adsorption capacity for all five cycles with absorbent restoration achieved with the use of 1.0 mol L–1 HCl solution, with 90% regeneration. 相似文献