首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   37篇
  国内免费   52篇
测绘学   42篇
大气科学   1篇
地球物理   84篇
地质学   194篇
海洋学   34篇
天文学   4篇
综合类   6篇
自然地理   15篇
  2024年   1篇
  2022年   18篇
  2021年   16篇
  2020年   7篇
  2019年   13篇
  2018年   9篇
  2017年   10篇
  2016年   11篇
  2015年   14篇
  2014年   10篇
  2013年   29篇
  2012年   8篇
  2011年   12篇
  2010年   14篇
  2009年   21篇
  2008年   11篇
  2007年   20篇
  2006年   16篇
  2005年   18篇
  2004年   20篇
  2003年   12篇
  2002年   9篇
  2001年   6篇
  2000年   11篇
  1999年   8篇
  1998年   8篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1988年   2篇
  1987年   2篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
31.
Abstract The low grade metamorphic Jurassic accretionary complex in the western part of the Mino-Tanba Belt, Southwest Japan, is a chaotic sedimentary complex which consists of argillaceous matrices with allochthonous blocks of chert, greenstone, siliceous mudstone, terrigenous sandstone and mudstone. The complex is divided into three distinct geologic units, Units I, II and III, with a tectonic boundary (thrust) between them, forming a pile-nappe structure. They have different features for lithologies, fossil age, metamorphic condition and K-Ar age. Microfossil researches revealed that their timings of accretion were in the early Early Jurassic ( ca 195 Ma) for Unit III, in the early Middle Jurassic ( ca 175 Ma) for Unit II and in the latest Late Jurassic (ca 147 Ma) for Unit I. On the other hand, K-Ar age determinations of white mica separated from pelitic rocks of the three units clarified that the subsequent subduction-related metamorphism was 23 million years after the accretion of each unit. These results strongly suggest that the accretionary and metamorphic process had taken place episodically with an interval of 20 to 28 million years during Mesozoic time in the western part of the Mino-Tanba Belt, Southwest Japan.  相似文献   
32.
Abstract The Shimanto accretionary complex on the Muroto Peninsula of Shikoku comprises two major units of Tertiary strata: the Murotohanto Sub-belt (Eocene-Oligocene) and the Nabae Sub-belt (Oligocene-Miocene). Both sub-belts have been affected by thermal overprints following the peak of accretion-related deformation. Palaeotemperatures for the entire Tertiary section range from ~ 140 to 315°C, based upon mean vitrinite reflectance values of 0.9–5.0%Rm. Values of illite crystallinity index are consistent with conditions of advanced diagenesis and anchimetamorphism. Illite/mica b0 lattice dimensions indicate that burial pressures were probably no greater than 2.5kbar. In general, levels of thermal maturity are higher for the Murotohanto Sub-belt than for the Nabae Sub-belt. The Eocene-Oligocene strata also display a spatial decrease in thermal maturity from south to north and this pattern probably was caused by regional-scale differential uplift following peak heating. Conversely, the palaeothermal structure within the Nabae Sub-belt is fairly uniform, except for the local effects of mafic intrusions at the tip of Cape Muroto. There is a paleotemperature difference of ~ 90°C across the boundary between the Murotohanto and Nabae Sub-belts (Shiina-Narashi fault), and this contrast is consistent with approximately 1200 m of post-metamorphic vertical offset. Subduction prior to Middle Miocene probably involved the Kula or fused Kula-Pacific plate and the background geothermal gradient during the Eocene-Oligocene phase of accretion was ~ 30–35°C/km. Rapid heating of the Shimanto Belt evidently occurred immediately after a Middle Miocene reorganization of the subduction boundary. Hot oceanic lithosphere from the Shikoku Basin first entered the subduction zone at ~ 15 Ma; this event also coincided with the opening of the Sea of Japan and the rapid clockwise rotation of southwest Japan. The background geothermal gradient at that time was ~ 70°C/km. Whether or not all portions of the inherited (Eocene-Oligocene) palaeothermal structure were overprinted during the Middle Miocene remains controversial.  相似文献   
33.
James  Hibbard  Daniel  Karig Asahiko  Taira 《Island Arc》1992,1(1):133-147
Abstract The Late Oligocene-Early Miocene Nabae Sub-belt of the Shimanto Accretionary Prism was created coevally (ca 25-15 Ma) with the opening of the Shikoku back-arc basin, located to the south of the southwest Japan convergent margin. The detailed geology of the sub-belt has been controversial and the interaction of the Shimanto accretionary prism and the opening of the Shikoku Basin has been ambiguous. New structural analysis of the sub-belt has led to a new perception of its structural framework and has significant bearing on the interpretation of the Neogene tectonics of southwest Japan. The sub-belt is divided into three units: the Nabae Complex; the Shijujiyama Formation; and the Maruyama Intrusive Suite. The Nabae Complex comprises coherent units and mélange, all of which show polyphase deformation. The first phase of deformation appears to have involved landward vergent thrusting of coherent units over the mélange terrane. The second phase of deformation involved continued landward vergent shortening. The Shijujiyama Formation, composed mainly of mafic volcanics and massive sandstone, is interpreted as a slope basin deposited upon the Nabae Complex during the second phase of deformation. The youngest deformational pulse involved regional flexing and accompanying pervasive faulting. During this event, mafic rocks of the Maruyama Intrusive Suite intruded the sub-belt. Fossil evidence in the Nabae Complex and radiometric dates on the intrusive rocks indicate that this tectonic scheme was imprinted upon the sub-belt between ~23 and ~14 Ma. The timing of accretion and deformation of the sub-belt coincides with the opening of the Shikoku Basin; hence, subduction and spreading operated simultaneously. Accretion of the Nabae Sub-belt was anomalous, involving landward vergent thrusting, magmatism in newly accreted strata and regional flexing. It is proposed that this complex and anomalous structural history is largely related to the subduction of the active Shikoku Basin spreading ridge and associated seamounts.  相似文献   
34.
Francesca  Liberi  Lauro  Morten  Eugenio  Piluso 《Island Arc》2006,15(1):26-43
Abstract Slices of oceanic lithosphere belonging to the neo‐Tethys realm crop out discontinuously in the northern Calabrian Arc, Southern Apennines. They consist of high‐pressure–low‐temperature metamorphic ophiolitic sequences formed from metaultramafics, metabasites and alternating metapelites, metarenites, marbles and calcschist. Ophiolites occupy an intermediate position in the northern Calabrian Arc nappe pile, situated between overlying Hercynian continental crust and the underlying Apenninic limestone units. In the literature, these ophiolitic sequences are subdivided into several tectonometamorphic units. Geochemical characteristics indicate that metabasites were derived from subalkaline basalts with tholeiitic affinity (transitional mid‐oceanic ridge basalt type), and a harzburgitic‐lherzolitic protolith is suggested for the serpentinites. The pressure–temperature‐deformation paths of the metabasites from different outcrops display similar features: (i) the prograde segment follows a typical Alpine geothermal gradient up to a metamorphic climax at 350°C and 0.9 GPa and crystallization of the high‐pressure mineral assemblage occurs along a pervasive foliation developed during a compressive tectonic event; and (ii) the retrogression path can be subdivided in two segments, the first is characterized by nearly isothermal decompression to approximately 400°C and 0.3 GPa and the second follows a cooling trajectory. During low‐pressure conditions, a second deformation event produces millimetric to decametric scale asymmetric folds that describe west‐verging major structures. The third deformation event is characterized by brittle extensional structures. The tectonometamorphic evolution of the ophiolitic sequences from the different outcrops is similar. Both thermobarometric modeling and tectonic history indicate that the studied rocks underwent Alpine subduction and exhumation processes as tectonic slices inside a west‐verging accretionary wedge. The subduction of oceanic lithosphere was towards the present east; therefore, the Hercynian continental crust, overthrusted on the ophiolitic accretionary wedge after the neo‐Tethys closure, was part of the African paleomargin or a continental microplate between Africa and Europe.  相似文献   
35.
多源异质遥感影像的分形特征分析   总被引:5,自引:0,他引:5  
分形理论已经在影像压缩、分割、去噪等方面表现出了较大的优势,其特点是能够准确地描述影像的空间结构信息和变化规律.分别采用分线法和三角棱柱法对同一实验地区的多种分辨率不同波段的遥感卫星影像进行分析,分别计算了图像中不同地形区域(如城区、湖泊、田地等)的分形维数,并根据两种算法的特性对图像进行了特征分析.多源遥感影像的实验结果证明,分形维数确实可以作为影像特征分析的一个重要工具,并可以指导分析遥感影像的应用情况.此外,在计算分形维数的过程中,采用三折线拟合法自适应地确定影像的无标度区间,提高了分形维数计算结果的可靠性.  相似文献   
36.
藏东波密-察隅地区新元古代-寒武纪波密群研究新进展   总被引:1,自引:0,他引:1  
藏东新元古代—寒武纪波密群由一套浅变质的活动大陆边缘浊积岩和碰撞型岛弧中酸性火山岩组成,化石稀少,缺乏时代依据。1∶20万区调和新一轮1∶25万区调修测专题研究在波密、察隅、贡山一带共采获微古植物化石21属50种,均为青、皖、浙、赣及滇中地区新元古代青白口纪、震旦纪及部分寒武纪早期较原始类型的常见分子。区域上可与高喜马拉雅的肉切村群,滇西的勐统群、公养河群和缅甸的Chaung Magyi群相对比。上述波密群活动大陆边缘浊积岩、碰撞型岛弧火山岩在经历了泛非末期壳源重熔花岗岩侵位(500~600Ma)和褶皱变质作用(644~664Ma)之后,成为冈瓦纳大陆北缘增生褶皱变质基底的一部分。  相似文献   
37.
On the basis of geological observations and the study of conodont and radiolarian microfauna, a new stratigraphic scheme was proposed for the Mesozoic deposits of the Komsomolsk district of the Amur region. The lower Khorpy Group (T2-J3) consists of two units: the Boktor (T2-J2) and Kholvasi (J2–3). The Boktor Sequence (400 m thick) is represented by pelagic cherts with an admixture of cherty-clayey shales and volcanic rocks. The Kholvasi Sequence (500 m thick) is built up of the predominant siltstones and clayey shales with rare intercalations and lenses of clayey cherts and cherty-clayey shales. The upper Komsomolskaya Group (K1) has a terrigenous composition and includes the Gorin, Pionerskaya, and Pivan formations of 5 km total thickness. It is made up of intercalated sandstones, siltstones, mudstones, and often turbidites (proximal to distal). The rocks contain abundant buchia fauna of Volgian-Valanginian age, as well as carbonized plant detritus and flora of the Early Cretaceous habit. The described complex is characterized by a nappe-fold structure typical of the accretionary prisms in the ocean-continent convergence zones. The predominance of the coherent type of accretionary prisms reflects the simple morphology of the oceanic plate.  相似文献   
38.
A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120–80 Ma and 58–47 Ma, respectively. Seven metamorphic zones (I–VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite–actinolite facies, through the crossite–epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet–amphibole and garnet–biotite pairs yields temperatures of about 350 °C in zone III to about 525 °C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, NaM4/AlIV in sodic-calcic and calcic amphibole, AlVI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6–7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 °C. Zoned minerals and other textural indications locally enable inference of P–T t trajectories, all with a clockwise evolution. A reconstruction in space and time of these PT t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D1 & D2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D1 represents the subduction movements expressed by the first vector of the clockwise P–T–t path, D2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.  相似文献   
39.
Cretaceous subduction complexes surround the southeastern margin of Sundaland in Indonesia. They are widely exposed in several localities, such as Bantimala (South Sulawesi), Karangsambung (Central Java) and Meratus (South Kalimantan).
The Meratus Complex of South Kalimantan consists mainly of mélange, chert, siliceous shale, limestone, basalt, ultramafic rocks and schists. The complex is uncomformably covered with Late Cretaceous sedimentary-volcanic formations, such as the Pitap and Haruyan Formations.
Well-preserved radiolarians were extracted from 14 samples of siliceous sedimentary rocks, and K–Ar age dating was performed on muscovite from 6 samples of schist of the Meratus Complex. The radiolarian assemblage from the chert of the complex is assigned to the early Middle Jurassic to early Late Cretaceous. The K–Ar age data from schist range from 110 Ma to 180 Ma. Three samples from the Pitap Formation, which unconformably covers the Meratus Complex, yield Cretaceous radiolarians of Cenomanian or older.
These chronological data as well as field observation and petrology yield the following constraints on the tectonic setting of the Meratus Complex.
(1) The mélange of the Meratus Complex was caused by the subduction of an oceanic plate covered by radiolarian chert ranging in age from early Middle Jurassic to late Early Cretaceous.
(2) The Haruyan Schist of 110–119 Ma was affected by metamorphism of a high pressure–low temperature type caused by oceanic plate subduction. Some of the protoliths were high alluminous continental cover or margin sediments. Intermediate pressure type metamorphic rocks of 165 and 180 Ma were discovered for the first time along the northern margin of the Haruyan Schist.
(3) The Haruyan Formation, a product of submarine volcanism in an immature island arc setting, is locally contemporaneous with the formation of the mélange of the Meratus Complex.  相似文献   
40.
A blueschist facies tectonic sliver, 9 km long and 1 km wide, crops out within the Miocene clastic rocks bounded by the strands of the North Anatolian Fault zone in southern Thrace, NW Turkey. Two types of blueschist facies rock assemblages occur in the sliver: (i) A serpentinite body with numerous dykes of incipient blueschist facies metadiabase (ii) a well‐foliated and thoroughly recrystallized rock assemblage consisting of blueschist, marble and metachert. Both are partially enveloped by an Upper Eocene wildflysch, which includes olistoliths of serpentinite–metadiabase, Upper Cretaceous and Palaeogene pelagic limestone, Upper Eocene reefal limestone, radiolarian chert, quartzite and minor greenschist. Field relations in combination with the bore core data suggest that the tectonic sliver forms a positive flower structure within the Miocene clastic rocks in a transpressional strike–slip setting, and represents an uplifted part of the pre‐Eocene basement. The blueschists are represented by lawsonite–glaucophane‐bearing assemblages equilibrated at 270–310 °C and ~0.8 GPa. The metadiabase dykes in the serpentinite, on the other hand, are represented by pumpellyite–glaucophane–lawsonite‐assemblages that most probably equilibrated below 290 °C and at 0.75 GPa. One metadiabase olistolith in the Upper Eocene flysch sequence contains the mineral assemblage epidote + pumpellyite + glaucophane, recording P–T conditions of 290–350 °C and 0.65–0.78 GPa, indicative of slightly lower depths and different thermal setting. Timing of the blueschist facies metamorphism is constrained to c. 86 Ma (Coniacian/Santonian) by Rb–Sr phengite–whole rock and incremental 40Ar–39Ar phengite dating on blueschists. The activity of the strike–slip fault post‐dates the blueschist facies metamorphism and exhumation, and is only responsible for the present outcrop pattern and post‐Miocene exhumation (~2 km). The high‐P/T metamorphic rocks of southern Thrace and the Biga Peninsula are located to the southeast of the Circum Rhodope Belt and indicate Late Cretaceous subduction and accretion under the northern continent, i.e. the Rhodope Massif, enveloped by the Circum Rhodope Belt. The Late Cretaceous is therefore a time of continued accretionary growth of this continental domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号