首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11028篇
  免费   2065篇
  国内免费   1693篇
测绘学   212篇
大气科学   915篇
地球物理   3127篇
地质学   4770篇
海洋学   1727篇
天文学   9篇
综合类   500篇
自然地理   3526篇
  2024年   44篇
  2023年   169篇
  2022年   456篇
  2021年   481篇
  2020年   458篇
  2019年   535篇
  2018年   477篇
  2017年   527篇
  2016年   531篇
  2015年   566篇
  2014年   726篇
  2013年   809篇
  2012年   658篇
  2011年   735篇
  2010年   569篇
  2009年   693篇
  2008年   721篇
  2007年   769篇
  2006年   698篇
  2005年   548篇
  2004年   527篇
  2003年   498篇
  2002年   330篇
  2001年   309篇
  2000年   315篇
  1999年   254篇
  1998年   188篇
  1997年   174篇
  1996年   177篇
  1995年   166篇
  1994年   156篇
  1993年   118篇
  1992年   97篇
  1991年   82篇
  1990年   58篇
  1989年   39篇
  1988年   36篇
  1987年   13篇
  1986年   15篇
  1985年   8篇
  1984年   14篇
  1983年   6篇
  1982年   2篇
  1981年   10篇
  1979年   14篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
T. Furuichi  Z. Win  R. J. Wasson 《水文研究》2009,23(11):1631-1641
Among the large rivers rising on the Tibetan Plateau and adjacent high mountains, the discharge and suspended sediment load of the Ayeyarwady (Irrawaddy) River are the least well known. Data collected between 1969 and 1996 at Pyay (Prome) are analysed to provide the best available modern estimate of discharge (379 ± 47 × 109 m3/year) and suspended sediment load (325 ± 57 × 106 t/year) for the river upstream of the delta head. A statistical comparison with data collected in the nineteenth century (1871 to 1879) shows discharge has significantly decreased in the last ~100 years. Regression and correlation analyses between discharge in the modern period and indices of El Niño–Southern Oscillation (ENSO) show a relationship. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
992.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   
993.
The effects of land‐use changes on the runoff process in the midstream plain of this arid inland river basin are a key factor in the rational allocation of water resources to the middle and lower reaches. The question is whether and by how much increasingly heavy land use impacts the hydrological processes in such an arid inland river basin. The catchment of the Heihe River, one of the largest inland rivers in the arid region of northwest China, was chosen to investigate the hydrological responses to land‐use change. Flow duration curves were used to detect trends and variations in runoff between the upper and lower reaches. Relationships among precipitation, upstream runoff, and hydrological variables were identified to distinguish the effects of climatic changes and upstream runoff changes on middle and downstream runoff processes. The quantitative relation between midstream cultivated land use and various parameters of downstream runoff processes were analysed using the four periods of land‐use data since 1956. The Volterra numerical function relation of the hydrological non‐linear system response was utilized to develop a multifactor hydrological response simulation model based on the three factors of precipitation, upstream runoff, and cultivated land area. The results showed that, since 1967, the medium‐ and high‐coverage natural grassland area in the midstream region has decreased by 80·1%, and the downstream runoff has declined by 27·32% due to the continuous expansion of the cultivated land area. The contribution of cultivated land expansion to the impact on the annual total runoff is 14–31%, on the annual, spring and winter base flow it is 44–75%, and on spring and winter discharge it is 23–64%. Once the water conservation plan dominated by land‐use structural adjustments is implemented over the next 5 years, the mean annual discharge in the lower reach could increase by 8·98% and the spring discharge by 26·28%. This will significantly alleviate the imbalance between water supply and demand in both its quantity and temporal distribution in the middle and lower reaches. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
994.
Potential evapotranspiration (PET) is a key input to hydrological models. Its estimation has often been via the Penman–Monteith (P–M) equation, most recently in the form of an estimate of reference evapotranspiration (RET) as recommended by FAO‐56. In this paper the Shuttleworth–Wallace (S–W) model is implemented to estimate PET directly in a form that recognizes vegetation diversity and temporal change without reference to experimental measurements and without calibration. The threshold values of vegetation parameters are drawn from the literature based on the International Geosphere–Biosphere Programme land cover classification. The spatial and temporal variation of the LAI of vegetation is derived from the composite NOAA‐AVHRR normalized difference vegetation index (NDVI) using a method based on the SiB2 model, and the Climate Research Unit database is used to provide the required meteorological data. All these data inputs are publicly and globally available. Consequently, the implementation of the S–W model developed in this study is applicable at the global scale, an essential requirement if it is to be applied in data‐poor or ungauged large basins. A comparison is made between the FAO‐56 method and the S–W model when applied to the Yellow River basin for the whole of the last century. The resulting estimates of RET and PET and their association with vegetation types and leaf area index (LAI) are examined over the whole basin both annual and monthly and at six specific points. The effect of NDVI on the PET estimate is further evaluated by replacing the monthly NDVI product with the 10‐day product. Multiple regression relationships between monthly PET, RET, LAI, and climatic variables are explored for categories of vegetation types. The estimated RET is a good climatic index that adequately reflects the temporal change and spatial distribution of climate over the basin, but the PET estimated using the S–W model not only reflects the changes in climate, but also the vegetation distribution and the development of vegetation in response to climate. Although good statistical relationships can be established between PET, RET and/or climatic variables, applying these relationships likely will result in large errors because of the strong non‐linearity and scatter between the PET and the LAI of vegetation. It is concluded that use of the implementation of the S–W model described in this study results in a physically sound estimate of PET that accounts for changing land surface conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
995.
Spring snow melt run‐off in high latitude and snow‐dominated drainage basins is generally the most significant annual hydrological event. Melt timing, duration, and flow magnitude are highly variable and influence regional climate, geomorphology, and hydrology. Arctic and sub‐arctic regions have sparse long‐term ground observations and these snow‐dominated hydrologic regimes are sensitive to the rapidly warming climate trends that characterize much of the northern latitudes. Passive microwave brightness temperatures are sensitive to changes in the liquid water content of the snow pack and make it possible to detect incipient melt, diurnal melt‐refreeze cycles, and the approximate end of snow cover on the ground over large regions. Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) passive microwave brightness temperatures (Tb) and diurnal amplitude variations (DAV) are used to investigate the spatial variability of snowmelt onset timing (in two stages, ‘DAV onset’ and ‘melt onset’) and duration for a complex sub‐arctic landscape during 2005. The satellites are sensitive to small percentages of liquid water, and therefore represent ‘incipient melt’, a condition somewhat earlier than a traditional definition of a melting snowpack. Incipient melt dates and duration are compared to topography, land cover, and hydrology to investigate the strength and significance of melt timing in heterogeneous landscapes in the Pelly River, a major tributary to the Yukon River. Microwave‐derived melt onset in this region in 2005 occurred from late February to late April. Upland areas melt 1–2 weeks later than lowland areas and have shorter transition periods. Melt timing and duration appear to be influenced by pixel elevation, aspect, and uniformity as well as other factors such as weather and snow mass distribution. The end of the transition season is uniform across sensors and across the basin in spite of a wide variety of pixel characteristics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
996.
Runoff coefficients of the source regions of the Huanghe River in 1956–2000 were analyzed in this paper. In the 1990s runoff of Tangnaihai Hydrologic Station of the Huanghe River experienced a serious decrease, which had at- tracted considerable attention. Climate changes have important impact on the water resources availability. From the view of water cycling, runoff coefficients are important indexes of water resources in a particular catchment. Kalinin baseflow separation technique was improved based on the characteristics of precipitation and streamflow. After the separation of runoff coefficient (R/P), baseflow coefficient (Br/P) and direct runoff coefficient (Dr/P) were estimated. Statistic analyses were applied to assessing the impact of precipitation and temperature on runoff coefficients (including Dr/P, Br/P and R/P). The results show that in the source regions of the Huanghe River, mean annual baseflow coefficient was higher than mean annual direct runoff coefficient. Annual runoff coefficients were in direct proportion to annual pre- cipitation and in inverse proportion to annual mean temperature. The decrease of runoff coefficients in the 1990s was closely related to the decrease in precipitation and increase in temperature in the same period. Over different sub-basins of the source regions of the Huanghe River, runoff coefficients responded differently to precipitation and temperature. In the area above Jimai Hydrologic Station where annual mean temperature is –3.9oC, temperature is the main factor in- fluencing the runoff coefficients. Runoff coefficients were in inverse relation to temperature, and precipitation had nearly no impact on runoff coefficients. In subbasin between Jimai and Maqu Hydrologic Station Dr/P was mainly affected by precipitation while R/P and Br/P were both significantly influenced by precipitation and temperature. In the area be-tween Maqu and Tangnaihai hydrologic stations all the three runoff coefficients increased with the rising of annual precipitation, while direct runoff coefficient was inversely proportional to temperature. In the source regions of the Huanghe River with the increase of average annual temperature, the impacts of temperature on runoff coefficients be-come insignificant.  相似文献   
997.
The planning and management of water resources in the Shiyang River basin, China require a tool for assessing the impact of groundwater and stream use on water supply reliabilities and improving many environment‐related problems such as soil desertification induced by recent water‐related human activities. A coupled model, integrating rule‐based lumped surface water model and distributed three‐dimensional groundwater flow model, has been established to investigate surface water and groundwater management scenarios that may be designed to restore the deteriorated ecological environment of the downstream portion of the Shiyang River basin. More than 66% of the water level among 24 observation wells have simulation error less than 1·0 m. The overall trend of the temporal changes of simulated and observed surface runoff at the Caiqi gauging station remains almost the same. The calibration was considered satisfactory. Initial frameworks for water allocation, including agricultural water‐saving projects, water diversion within the basin and inter‐basin water transfer, reducing agricultural irrigation area and surface water use instead of groundwater exploitation at the downstream were figured out that would provide a rational use of water resources throughout the whole basin. Sixteen scenarios were modelled to find out the most appropriate management strategies. The results showed that in the two selected management options, the groundwater budget at the Minqin basin was about 1·4 × 108 m3/a and the ecological environment would be improved significantly, but the deficit existed at the Wuwei basin and the number was about 0·8 × 108 m3/a. Water demand for domestic, industry and urban green area would be met in the next 30 years, but the water shortage for meeting the demand of agricultural water use in the Shiyang River basin was about 2·2 × 108 m3/a. It is suggested that more inter‐basin water transfer should be required to obtain sustainable water resource use in the Shiyang River basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
998.
利用地球化学元素分析方法,对淮河源区中更新世黄土、古土壤剖面含有的化学元素及多种化学元素指标进行了分析。研究表明:区内中更新世以来的气候变化,主要以湿热气候为主,淋溶及氧化作用较强;表现在气温上HT-1~HT-3的气温较低,HT-4~HT-7的气温高,HT-8的气温又相对较低,其变化趋势表现为中更新世经历了从早期寒冷转湿热转温干,中期凉干转暖湿到晚期温湿转暖湿。  相似文献   
999.
Land use/cover change (LUCC) is one of the main boundary conditions which influence many hydrologic processes. In view of the importance of Taihu Lake Watershed in China and the urgency of discovering the impacts of LUCC on storm runoff, two flood events under five land cover scenarios in the Xitiaoxi River Basin of the upstream of Taihu Lake watershed were simulated by distributed hydrologic modeling system HEC-HMS. The influences of each land cover on storm runoff were discussed. It was concluded that under the same rainstorm the ascending order of runoff coefficient and peak flow produced by the 5 different land covers were woodland, shrub, grassland, arable land, and built-up land; the descending order of swelling time were woodland, shrub, grassland, arable land, and built-up land. Scenario of built-up land was the first to reach peak flow, then arable land, grassland, shrub, and woodland. There were close relationships between the runoff coefficients produced by the 5 different land covers. The degrees of impacts on runoff coefficient of land cover change modes were sorted by descending: woodland to built-up land, shrub to built-up land, grassland to built-up land, arable land to built-up land, woodland to arable land, shrub to arable land, arable land to grassland, shrub to grassland, grassland to arable land, and woodland to shrub. Urbanization will contribute to flood disaster, while forestation will mitigate flood disaster.  相似文献   
1000.
Eocene carbonate deposits of the Barru area, Sulawesi, Indonesia, provide a rare insight into sedimentation prior to and during propagation of normal faults to the surface. Three main successions; late prerift, latest prerift/earliest synrift and synrift, are characterised by distinctive facies associations and sequence development. Shallow water foraminiferal shoals and intervening lower energy depositional environments occurred during the late prerift in areas which latter formed footwall highs and hangingwall depocentres, respectively. During the latest prerift/earliest synrift, shallow water shelves deepened laterally into slope environments in developing hangingwall depocentres. In both these sequences, sections in developing hangingwall areas are thickest, deepen up-section and thin laterally towards growing footwall highs. Active faulting resulted in rapid drowning of hangingwall depocentres and massive reworking of material derived from collapse of the platform margin and adjacent shallow water/emergent footwall highs.Differential subsidence, controlling water depths and accommodation space, types of carbonate producers and active faulting were the main factors affecting depositional environments and facies distributions. Carbonate producers are extremely sensitive indicators of depositional water depth and energy, hence rapid lateral and vertical facies variations in the Barru area provide quantifiable insight into environmental changes prior to and during active faulting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号