首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   0篇
地球物理   10篇
地质学   48篇
海洋学   1篇
天文学   8篇
自然地理   6篇
  2022年   1篇
  2021年   2篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有73条查询结果,搜索用时 625 毫秒
31.
The North Taymyr ice-marginal zone (NTZ) is a complex of glacial, glaciofluvial and glaciolacustrine deposits, laid down on the northwestern Taymyr Peninsula in northernmost Siberia, along the front of ice sheets primarily originating on the Kara Sea shelf. It was originally recognised from satellite radar images by Russian scientists; however, before the present study, it had not been investigated in any detail. The ice sheets have mainly inundated Taymyr from the northwest, and the NTZ can be followed for 700–750 km between 75°N and 77°N, mostly 80–100 km inland from the present Kara Sea coast.The ice-marginal zone is best developed in its central parts, ca. 100 km on each side of the Lower Taymyr River, and has there been studied by us in four areas. In two of these, the ice sheet ended on land, whereas in the two others, it mainly terminated into ice-dammed lakes. The base of the NTZ is a series of up to 100-m-high and 2-km-wide ridges, usually consisting of redeposited marine silts. These ridges are still to a large extent ice-cored; however, the present active layer rarely penetrates to the ice surface. Upon these main ridges, smaller ridges of till and glaciofluvial material are superimposed. Related to these are deltas corresponding to two generations of ice-dammed lakes, with shore levels at 120–140 m and ca. 80 m a.s.l. These glacial lakes drained southwards, opposite to the present-day pattern, via the Taymyr River valley into the Taymyr Lake basin and, from there, most probably westwards to the southern Kara Sea shelf.The basal parts of the NTZ have not been dated; however, OSL dates of glaciolacustrine deltas indicate an Early–Middle Weichselian age for at least the superimposed ridges. The youngest parts of the NTZ are derived from a thin ice sheet (less than 300 m thick near the present coast) inundating the lowlands adjacent to the lower reaches of the Taymyr River. The glacial ice from this youngest advance is buried under only ca. 0.5 m of melt-out till and is exposed by hundreds of shallow slides. This final glaciation is predated by glacially redeposited marine shells aged ca. 20,000 BP (14C) and postdated by terrestrial plant material from ca. 11,775 and 9500 BP (14C)–giving it a last global glacial maximum (LGM; Late Weichselian) age.  相似文献   
32.
The study area in Mysliborz Lakeland (Western Pomerania), NW Poland, is located in the glaciomarginal zone of the Pomeranian Phase (Weichselian glaciation). Three subenvironments of deposits are exposed in the six analysed pits: glacial ice-contact subenvironment, transitional subenvironment and glaciofluvial subenvironment. The glacial ice-contact subenvironment is dominated by coarse-grained, massive and thick beds derived from debris flows and also horizontally laminated sand and gravel deposited by sheet flows. The transitional subenvironment represents deposits between end moraine and proximal outwash plain (sandur). The transitional subenvironment is dominated by coarse-grained diamicton derived from debris flows, horizontally laminated beds deposited by sheet flows, and additionally cross-stratified sediments from channel flows and massive sand from hyper-concentrated flows. The glaciofluvial subenvironment corresponds with the distal part of the glaciomarginal zone. The processes of sediment deposition in the glaciofluvial subenvironment are derived from shallow sheet flows and channelized flows. Architectural element analysis highlights the change in lithofacies associations from glacial ice-contact, through transitional to glaciofluvial subenvironments. This sedimentological zonation of the glaciomarginal zone may have been developed in other glaciomarginal belts and remains to be recognized.  相似文献   
33.
Macroscopic opal-A concretions were observed in lake marl deposited in a small Flemish lake (Belgium) during the Allerød biozone of the Weichselian Late-glacial (ca. 12–11 ka BP). The silica from these concretions was derived within the profile, by the leaching of siliceous microfossils – mainly diatom frustules. Formation of the concretions probably resulted from pH- and/or evaporation related precipitation of the silica at a lower stratigraphic level, presumably corresponding more or less to a former low position of the groundwater table. The presence of these concretions is probably related to alternatingly wet and dry local conditions during the middle and later part of the Allerød.  相似文献   
34.
U-Th ages have been obtained by TIMS on the growth periods of a stalagmite from the “Grotte des Puits de Pierre-la-Treiche” (northeastern France), during the middle part of the “Weichselian glaciation” (Marine Isotope Stage 3), between 55.36 ± 0.95 and 53.34 ± 0.49 ka and around 45.85 ± 0.49 ka. These episodes are contemporaneous with abrupt climatic variations recorded in Greenland ice cores (Greenland interstadials 12, 14 and 15) that have been previously recognized in European speleothems. They also coincide with two interstadials, known as “Goulotte” and “Pile” in the Grande Pile pollen sequence (eastern France), which have been correlated with the Moershoofd complex in the Netherlands. Such evidence of speleothem deposition related to temperate episodes gives a strong indication of the absence of continuous shallow permafrost during the middle part of MIS 3 in northeastern France.  相似文献   
35.
Studies of lake sediments on Sejerø in southern Kattegat indicate a treeless arctic environment with the dwarf shrub Salix polaris, herbs and wetland mosses. The mean July temperature was around 8 to 10°C. An AMS radiocarbon age determination of a Salix twig yielded an age of around 36 000 14C yr BP, which is in accordance with previous conventional dating of bulk sediment samples. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
36.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
37.
Reconstructions of the Weichselian Late Pleniglacial wind direction in northwest and central Europe are reviewed and compared with palaeoclimate simulations performed with an atmospheric general circulation model. These reconstructions are based on proxy data containing information on former wind directions, such as relic dune forms, sediments and wind‐polished rock surfaces. The objective is to investigate whether: (1) the proxy information is internally consistent; and (2) in agreement with the model simulations. We find a general consensus in the proxy‐based reconstructions, indicating a dominant westerly to northwesterly wind in winter during the Late Pleniglacial. The model results indicate over the study area an atmospheric circulation in winter that is dominated by southwesterly to west‐northwesterly winds, which are stronger than the southwesterly winds in the present‐day climate. The main driving factors behind the anomalous atmospheric circulation in the Late Pleniglacial are the Laurentide Ice Sheet and a colder North Atlantic Ocean with a relatively extensive sea‐ice cover, leading to an eastward relocation of the Icelandic Low and an enhanced pressure gradient over northwest Europe. The minor difference in Late Pleniglacial wind direction between the reconstructions and model can be explained by a combination of uncertainties in the proxy data and the relatively low spatial resolution of the applied climate model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
38.
The Weichselian Late Pleniglacial and Lateglacial aeolian stratigraphy (Older Coversand I, Beuningen Gravel Bed, Older Coversand II, Younger Coversand I, Usselo Soil, Younger Coversand II) in the southern Netherlands has been reinvestigated in its type locality (Grubbenvorst). Sedimentary environments have been reconstructed and related to their climatic evolution based on periglacial structures. In addition, 22 optically stimulated luminescence (OSL) ages have been determined that provide an absolute chronology for the climatic evolution and environmental changes of the coversand area. From this work it appears that, prior to 25 ka fluvial deposition by the Maas dominated. After 25 ka fluvial activity reduced and deposition occurred in a fluvio‐aeolian environment with continuous permafrost (Older Coversand I). This depositional phase was dated between 25.2 ± 2.0 and 17.2 ± 1.2 ka. The upward increase of aeolian activity and cryogenic structures in this unit is related to an increase of climatic aridity and a decrease in sedimentation rate during the Last Glacial Maximum (LGM). The Beuningen Gravel Bed, that results from deflation with polar desert conditions and that represents a stratigraphic marker in northwestern Europe, was bracketed between 17.2 ± 1.2 and 15.3 ± 1.0 ka. Based on this age result a correlation with Heinrich event H1 is suggested. Permafrost degradation occurred at the end of this period. Optical ages for the Older Coversand II unit directly overlying the Beuningen Gravel Bed range from 15.3 ± 1.0 ka at the base to 12.7 ± 0.9 ka at the top. Thus this regionally important Older Coversand II unit started at the end of the Late Pleniglacial and continued throughout the early Lateglacial. Its formation after the Late Pleniglacial (LP) maximum cold and its preservation are related to rapid climatic warming around 14.7 ka cal. BP. The Allerød age of the Usselo Soil was confirmed by the optical ages. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
39.
Ice-proximal sedimentological features from the northwestern Barents Sea suggest that this region was covered by a grounded ice sheet during the Late Weichselian. However, there is debate as to whether these sediments were deposited by the ice sheet at its maximum or a retreating ice sheet that had covered the whole Barents Sea. To examine the likelihood of total glaciation of the Late Weichselian Barents Sea, a numerical ice-sheet model was run using a range of environmental conditions. Total glaciation of the Barents Sea, originating solely from Svalbard and the northwestern Barents Sea, was not predicted even under extreme environmental conditions. Therefore, if the Barents Sea was completely covered by a grounded Late Weichselian ice sheet, then a mechanism (not accounted for within the glaciological model) by which grounded ice could have formed rapidly within the central Barents Sea, may have been active during the last glaciation. Such mechanisms include (i) grounded ice migration from nearby ice sheets in Scandinavia and the central Barents Sea, (ii) the processes of sea-ice-induced ice-shelf thickening and (iii) isostatic uplift of the central Barents Sea floor.  相似文献   
40.
Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1–12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network.These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel–levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land.The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses.Asymmetrical submarine channel–levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel–levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号