首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1504篇
  免费   207篇
  国内免费   149篇
测绘学   11篇
大气科学   136篇
地球物理   514篇
地质学   249篇
海洋学   810篇
天文学   15篇
综合类   20篇
自然地理   105篇
  2024年   1篇
  2023年   7篇
  2022年   18篇
  2021年   31篇
  2020年   38篇
  2019年   74篇
  2018年   29篇
  2017年   63篇
  2016年   61篇
  2015年   62篇
  2014年   61篇
  2013年   50篇
  2012年   42篇
  2011年   104篇
  2010年   73篇
  2009年   114篇
  2008年   180篇
  2007年   130篇
  2006年   71篇
  2005年   61篇
  2004年   54篇
  2003年   77篇
  2002年   77篇
  2001年   59篇
  2000年   57篇
  1999年   46篇
  1998年   39篇
  1997年   32篇
  1996年   23篇
  1995年   20篇
  1994年   18篇
  1993年   22篇
  1992年   18篇
  1991年   13篇
  1990年   6篇
  1989年   8篇
  1988年   8篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   3篇
  1980年   2篇
排序方式: 共有1860条查询结果,搜索用时 671 毫秒
851.
A lift based wave energy converter, namely, a cycloidal turbine, is investigated. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. In the two-dimensional limit, i.e. for large spans of the hydrofoil (or an array of these), the geometry of the converter is suitable for wave termination of straight crested Airy waves. Results from two-dimensional potential flow simulations, with thin hydrofoils modeled as either a point vortex or discrete vortex panel, are presented. The operation of the cycloidal turbine both as a wave generator as well as a wave-to-shaft energy converter interacting with a linear Airy wave is demonstrated. The impact on the performance of the converter for design parameters such as device size, submergence depth, and number of hydrofoils is shown. For optimal parameter choices, simulation results demonstrate inviscid energy conversion efficiencies of more than 99% of the incoming wave energy to shaft energy. This is achieved using feedback control to synchronize the rotational rate, blade pitch angle, and phase of the cycloidal wave energy converter to the incoming wave. While complete termination of the incoming wave is shown, the remainder of the energy is lost to harmonic waves traveling in the up-wave and down-wave directions.  相似文献   
852.
This study gives a new approximate analytic solution for water wave scattering by a submerged horizontal porous disk in the context of the linear potential theory. The solution is based on the domain decomposition method. The velocity potentials are determined by two different approaches. One approach is to adopt decompositions for velocity potentials, and the other is to expand the vertical derivative of the velocity potential on the porous disk along the radial direction. Hence the velocity potentials are determined by the matched eigenfunction expansions. Differing from previous solutions with respect to the porous disk, the present solution needs no complex dispersion relations. Thus the new solution is easier for numerical implementation. According to numerical examples, the convergence of the present solution is satisfactory. In addition, the present predictions of the wave surface elevation and the vertical wave force on the disk agree very well with previous results by different approaches. The present solution can also be extended to other structures involving disks, such as a fish cage, a porous disk with finite thickness, and a submerged elastic disk.  相似文献   
853.
The use of acoustics to measure sediment transport boundary layer processes has gained increasing acceptance over the past two decades. This has occurred through the development of increasingly sophisticated measuring systems and theoretical developments, which have enabled flow and suspended sediment parameters to be obtained from acoustic data with a high degree of accuracy. Until relatively recently, separate acoustic systems were used to measure flow and suspended sediment concentration. Over the past few years, however, the technology has become sufficiently advanced so that flow and sediment measurements can be integrated into a single system. This integration provides, quasi-instantaneous, non-intrusive, co-located, high temporal-spatial resolution measurements of benthic flow and sediment processes. Here the development of such an instrument, the Acoustic Concentration and Velocity Profiler (ACVP) is described. The theory underpinning its application is outlined, new approaches to velocity de-aliasing and suspended sediment inversion instabilities using multi-frequency capabilities are presented and the application of the system to sediment transport processes over a sandy ripple bed is illustrated. The observations clearly show the value of such instrumentation for studying the dynamical interaction between the bed, the flow and the sediments at and within the bottom boundary layer.  相似文献   
854.
This paper investigates the evolution of wave shape over a low-crested structure (LCS) using a 2-D RANS-VOF model. The model predictions of surface elevation and wave skewness and asymmetry are in good agreement with the recent measurements collected in a small scale wave channel at the University of Cantabria (UCA). The empirical formulae relating wave skewness and asymmetry to local Ursell number by Peng et al. (2009) have been extended to include the effect of wave reflection and the ramp in front of LCS and a wider range of Ursell number in the present study. In the presence of LCS, wave skewness decreases slightly above the seaward slope, then increases rapidly up to a maximum value above the structure crest, and decreases drastically above the leeward slope. Wave asymmetry decreases sharply above the seaward slope to a negative minimum value at the structure crest, and then increases rapidly to a positive value above the leeward slope. Our bispectral analysis indicates that sum interactions increase skewness and decrease asymmetry while difference interactions have opposite effects and that the former dominate above the seaward slope and on the structure crest but the latter dominate above the leeward slope of LCS. The observed wave shape evolution over a LCS can be attributed to the changes in the interplay of sum and difference interactions. We found that incident wave height and wave period, relative structure freeboard, structure crest width and structure porosity are the controlling factors for wave shape evolution over LCS. This study provides new insights on the role of wave skewness and asymmetry in the breakwaters stability and sediment transport around the structure and on the beaches behind it.  相似文献   
855.
Solitary wave evolution over a shelf including porous damping is investigated using Volume-Averaged Reynolds Averaged Navier–Stokes equations. Porous media induced damping is determined based on empirical formulations for relevant parameters, and numerical results are compared with experimental information available in the literature. The aim of this work is to investigate the effect of wave damping on soliton disintegration and evolution along the step for both breaking and non-breaking solitary waves. The influence of several parameters such as geometrical configuration (step height and still water level), porous media properties (porosity and nominal diameter) or solitary wave characteristics (wave height) is analyzed. Numerical simulations show the porous bed induced wave damping is able to modify wave evolution along the step. Step height is observed as a relevant parameter to influence wave evolution. Depth ratio upstream and downstream of the edge appears to be the more relevant parameter in the transmission and reflection coefficients than porosity or the ratio of wave height–water depth. Porous step also modifies the fission and the solitary wave disintegration process although the number of solitons is observed to be the same in both porous and impermeable steps. In the absence of breaking, porous bed triggers a faster fission of the incident wave into a second and a third soliton, and the leading and the second soliton reduces their amplitude while propagating. This decrement is observed to increase with porosity. Moreover, the second soliton is released before on an impermeable step. Breaking process is observed to dominate over the wave dissipation at the porous bottom. Fission is first produced on a porous bed revealing a clear influence of the bottom characteristics on the soliton generation. The amplitude of the second and third solitons is very similar in both impermeable and porous steps but they evolved differently due to the effect of bed damping.  相似文献   
856.
Much of the existing knowledge about breaking waves comes from physical model experiments scaled using Froude's law. A widely held assumption is that surface tension effects are not significant at typical laboratory scales and specifically for waves longer than 2 m. Since, however, smaller wavelengths are not untypical in small to medium scale laboratory facilities, a consideration of surface tension effects is indeed important. Although some emphasis has been given in the past, little is known regarding the importance of surface tension following impingement of the breaking-wave crest and especially on the overall energy dissipation by laboratory breaking waves.  相似文献   
857.
A universal formula for the estimation of equilibrium scour depth around a single cylindrical pile under the action of steady currents, tidal and short waves is presented.  相似文献   
858.
A model for the downward transfer of wind momentum is derived for growing waves. It is shown that waves, which grow due to an uneven pressure distribution on the water surface or a wave-coherent surface shear stress have horizontal velocities out of phase with the surface elevation. Further, if the waves grow in the x-direction, while the motion is perhaps time-periodic at any fixed point, the Reynolds stresses associated with the organized motion are positive. This is in agreement with several field and laboratory measurements which were previously unexplained, and the new theory successfully links measured wave growth rates and measured sub-surface Reynolds stresses. Wave coherent air pressure (and/or surface shear stress) is shown to change the speed of wave propagation as well as inducing growth or decay. From air pressure variations that are in phase with the surface elevation, the influence on the waves is simply a phase speed increase. For pressure variations out of phase with surface elevation, both growth (or decay) and phase speed changes occur. The theory is initially developed for long waves, after which the velocity potential and dispersion relation for linear waves in arbitrary depth are given. The model enables a sounder model for the transfer to storm surges or currents of momentum from breaking waves in that it does not rely entirely on ad-hoc turbulent diffusion. Future models of atmosphere-ocean exchanges should also acknowledge that momentum is transferred partly by the organized wave motion, while other species, like heat and gasses, may rely totally on turbulent diffusion. The fact that growing wind waves do in fact not generally obey the dispersion relation for free waves may need to be considered in future wind wave development models.  相似文献   
859.
The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales--The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.  相似文献   
860.
Sediment incipient motion is a fundamental issue in sediment transport theory and engineering practice. Whilst Shields curve often is used to determine the threshold of sediment movement under unidirectional current conditions, it is unclear whether it can be directly applied for the wave or combined wave-current conditions. The study developed adaptive criterion curves describing incipient motion of sediment under wave and current conditions based on the flow pattern around the sediment particles. Firstly, the flow pattern law for fixed particles was recognized based on the friction law under various dynamic conditions (wave, current, and their combinations), and the flow pattern demarcations for incipient sediment motion were obtained with the threshold conditions for sediment movement under various dynamic conditions combined. Secondly, the exact shape of the Shields curve in each flow regime was derived under the current condition. By combining the flow pattern demarcations for incipient sediment motion under the wave condition, the criterion curve under the wave condition was derived. By combining the flow pattern demarcations for incipient sediment motion under the combined current-wave condition, the criterion curve for sediment incipient motion under the combined current-wave condition was derived. The results indicated that the flow pattern around incipient particles includes laminar, laminar-rough turbulent transition, and rough turbulent regimes. The criterion curves for sediment incipient motion under various dynamic conditions stayed the same in the laminar and rough turbulent regimes, but different in the transition regime. Depending on the relative strengths of the currents and waves, the shape of the criterion curve under the combined current-wave condition transitions adaptively between the criterion curve under the current condition and the criterion curve under the wave conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号