首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5936篇
  免费   1320篇
  国内免费   2518篇
测绘学   135篇
大气科学   2360篇
地球物理   1770篇
地质学   2937篇
海洋学   1342篇
天文学   270篇
综合类   249篇
自然地理   711篇
  2024年   35篇
  2023年   124篇
  2022年   212篇
  2021年   238篇
  2020年   301篇
  2019年   404篇
  2018年   305篇
  2017年   277篇
  2016年   336篇
  2015年   317篇
  2014年   434篇
  2013年   480篇
  2012年   456篇
  2011年   468篇
  2010年   374篇
  2009年   472篇
  2008年   406篇
  2007年   502篇
  2006年   462篇
  2005年   354篇
  2004年   341篇
  2003年   290篇
  2002年   260篇
  2001年   208篇
  2000年   239篇
  1999年   190篇
  1998年   169篇
  1997年   168篇
  1996年   190篇
  1995年   145篇
  1994年   130篇
  1993年   127篇
  1992年   86篇
  1991年   66篇
  1990年   54篇
  1989年   44篇
  1988年   22篇
  1987年   22篇
  1986年   8篇
  1985年   15篇
  1984年   15篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1974年   1篇
  1954年   4篇
排序方式: 共有9774条查询结果,搜索用时 15 毫秒
91.
The Plattengneis shear zone is a 250–600 m thick, flat lying, Cretaceous, eclogite facies, mylonitic shear zone, with north-over-south transport direction, that is exposed over almost 1000 km2 in the Koralpe region along the eastern margin of the Alps. Although the shear zone is one of the largest in the Alps, its role in the Eoalpine metamorphic evolution and the subsequent exhumation of the region, remain enigmatic and its large-scale geometry is not well understood. The outcrop pattern suggests that the shear zone is made up of a single sheet that is folded into a series of open syn- and antiforms with wavelengths of about 10 km. Eclogite bodies occur above, within and below the shear zone and there is no metamorphic grade change across the shear zone. In the south, the fold axes strike east–west and plunge shallowly to the east. In the north, the fold axes are oriented in north–south direction and form a dome shaped structure of the shear zone. Total shortening during this late stage warping event was of the order of 5%. Indirect evidence constrains this folding event to have occurred between 80 and 50 Ma and the fold geometry implies that the final exhumation in the Koralpe occurred somewhat later than further north. Interestingly, the shear zone appears to strike out of the topography in the south and dip into the topography in the north, so that north of the shear zone only hanging-wall rocks are exposed and south of it only foot-wall rocks. Possibilities for the geometric relationship of the Plattengneis shear zone with the surrounding south dipping detachments are discussed.  相似文献   
92.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   
93.
The hybrid numerical model had been developed to simulate a complicated 3D flow around structures generated by tsunami. In the model, the conventional 2D model is adopted for the wide region far from structures and the 3D non-hydrostatic pressure model is used in the limited region adjacent to structures. The applicability of the model is shown by comparisons of the numerical results with the experimental results of the laboratory model tests and the numerical analysis results of the conventional whole 2D simulation. In addition, the effect of a submerged structure at the opening of a breakwater is discussed from the numerical simulations by the hybrid model. The submerged structure improves the stability of the rubble mound and reduces the tsunami inflow into the bay, while it increases the water surface velocity around the opening of the breakwater. The increase of surface velocity causes the increases of impulsive forces by collision with drafts and so on.  相似文献   
94.
Threshold velocity for wind erosion: the effects of porous fences   总被引:3,自引:0,他引:3  
Porous fence is a kind of artificial windbreak that has many practical applications. The threshold wind velocities at different distances downwind from porous fences were measured and the corresponding characteristics of particle movement observed to assess their shelter effect. It is found that the fence’s porosity is the key factor that determines the resulting shelter effect. The area near a fence can be typically classified into five regions, each with a different mode of particle movement. Dense fences, and especially solid fences, favor the accumulation of sand upwind of the fences. Fences with porosities of 0.3–0.4 produce the maximum threshold wind velocity; those with porosities of 0.3–0.6 (depending on the fence height) provide the maximum effective shelter distance. It is confirmed that the fence porosities of 0.3–0.4 that have been proposed for practical application in previous research are the most effective for abating wind erosion.  相似文献   
95.
In ground improvement projects with prefabricated vertical drains, the duration of the preloading period is set in advance based on the predetermined time rate of consolidation of the compressible layer. If prediction is accurately done, the required degree of consolidation is met at the pre-determined preloading time. As such, there is a requirement for in-situ tests to be carried out just prior to the removal of surcharge to assess the degree of consolidation of the improved ground. In-situ tests were carried out after 23 months of surcharge loading at the In-Situ Test Site within the Changi East Reclamation Project in the Republic of Singapore. In-situ testing works in this research study comprises the use of field vane shear, piezocone, flat dilatometer and self-boring pressuremeter. The in-situ tests were carried out to determine the shear strength and degree of consolidation of the Singapore marine clay at Changi after 23 months of surcharge loading. The In-Situ Test Site consisted of a Vertical Drain Area as well as an untreated Control Area. Both areas were located adjacent to each other and were surcharged simultaneously to the same level and surcharge left in place for a period of 23 months. Comparison was made between the in-situ test results of the Vertical Drain Area and the untreated Control Area.  相似文献   
96.
97.
98.
This paper updates a life-cycle net energy analysis and carbon dioxide emissions analysis of three Midwestern utility-scale wind systems. Both the Energy Payback Ratio (EPR) and CO2 analysis results provide useful data for policy discussions regarding an efficient and low-carbon energy mix. The EPR is the amount of electrical energy produced for the lifetime of the power plant divided by the total amount of energy required to procure and transport the materials, build, operate, and decommission the power plants. The CO2 analysis for each power plant was calculated from the life-cycle energy input data. A previous study also analyzed coal and nuclear fission power plants. At the time of that study, two of the three wind systems had less than a full year of generation data to project the life-cycle energy production. This study updates the analysis of three wind systems with an additional four to eight years of operating data. The EPR for the utility-scale wind systems ranges from a low of 11 for a two-turbine system in Wisconsin to 28 for a 143-turbine system in southwestern Minnesota. The EPR is 11 for coal, 25 for fission with gas centrifuge enriched uranium and 7 for gaseous diffusion enriched uranium. The normalized CO2 emissions, in tonnes of CO2 per GWeh, ranges from 14 to 33 for the wind systems, 974 for coal, and 10 and 34 for nuclear fission using gas centrifuge and gaseous diffusion enriched uranium, respectively.  相似文献   
99.
Typical pull-apart structures were created in scaled clay experiments with a pure strike-slip geometry (Riedel type experiments). A clay slab represents the sedimentary cover above a strike-slip fault in the rigid basement. At an early stage of the development of the deformation zone, synthetic shear fractures (Riedel shears) within the clay slab display dilatational behaviour. With increasing basal displacement the Riedel shears rotate and open further, developing into long, narrow and deep troughs. The shear displacement and the low angle with the prescribed principal basal fault set them apart from tension gashes. At a more evolved stage, synthetic segments (Y-shears) parallel to the basal principal fault develop and accommodate progressive strike-slip deformation. The Y-shears connect the tips of adjacent troughs developed from the earlier Riedel shears, resulting in the typical rhomb-shaped structures characteristic for pull-apart basins. The Strait of Sicily rift zone, with major strike-slip systems being active from the Miocene to the Present, comprises pull-apart basins at different length scales, for which the structural record suggests development by a mechanism similar to that observed in our experiments.  相似文献   
100.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号