首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4039篇
  免费   829篇
  国内免费   2154篇
测绘学   40篇
大气科学   479篇
地球物理   1377篇
地质学   4088篇
海洋学   597篇
天文学   20篇
综合类   178篇
自然地理   243篇
  2024年   17篇
  2023年   61篇
  2022年   127篇
  2021年   136篇
  2020年   208篇
  2019年   264篇
  2018年   238篇
  2017年   157篇
  2016年   271篇
  2015年   239篇
  2014年   305篇
  2013年   394篇
  2012年   305篇
  2011年   337篇
  2010年   312篇
  2009年   316篇
  2008年   308篇
  2007年   358篇
  2006年   372篇
  2005年   285篇
  2004年   253篇
  2003年   222篇
  2002年   177篇
  2001年   162篇
  2000年   149篇
  1999年   138篇
  1998年   118篇
  1997年   135篇
  1996年   143篇
  1995年   106篇
  1994年   86篇
  1993年   78篇
  1992年   47篇
  1991年   43篇
  1990年   41篇
  1989年   29篇
  1988年   22篇
  1987年   19篇
  1986年   11篇
  1985年   6篇
  1984年   14篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有7022条查询结果,搜索用时 31 毫秒
281.
沈光银 《地质找矿论丛》2007,22(3):206-209,223
北干沟金矿床是韧性剪切带含金石英脉型金矿床。韧性剪切带以发育糜棱岩和片理化带为特征,应变强度和退化变质作用从边缘到中心逐渐增强,并形成鞘褶皱;韧性构造岩具有分带性;产于韧性剪切带中心部位的石英脉是主要的含金脉体;韧性剪切带的形态、活动阶段及韧性剪切变质岩的分带性对金矿具有明显的控制作用。  相似文献   
282.
含盐量对水泥土强度影响的室内试验研究   总被引:1,自引:0,他引:1  
通过含盐量对非有机质土加固强度影响的试验研究,得到了含盐量对水泥土强度的提高或减小的阈值为3.5%。当盐渍土的含盐量低于这个阈值时,盐渍土的加固强度会因可溶性盐的结晶膨胀作用,提高水泥土的强度;相反当盐渍土的含盐量高于该阈值时,盐渍土的强度会因可溶性盐的过多的结晶膨胀作用,使水泥土的结构遭到破坏,从而使水泥土的强度大大降低。同时分析了可溶性硫酸盐、镁盐和氯盐对水泥土的浸蚀性作用,并从盐类对水泥土强度的影响从机理上进行了阐释,提出了高含盐量对水泥土破坏作用的对策。  相似文献   
283.
云母石英片岩的三轴蠕变试验研究   总被引:1,自引:0,他引:1  
在三轴蠕变试验的基础上,通过对径向蠕变和轴向蠕变的比较研究,得出云母石英片岩的蠕变变形和长期强度特点:径向蠕变变形比轴向蠕变变形敏感,以径向蠕变长期强度作为长期强度更合理;围压越大,对径向变形的约束能力越强,径向蠕变长期强度和轴向蠕变长期强度均增加,径向蠕变长期强度与轴向蠕变长期强度的比值减小。同时指出进行径向蠕变研究的意义。  相似文献   
284.
Combined effects of matrix plastic compressibility and void shape are investigated for ductile porous materials. To this end, a spheroidal volume containing a confocal spheroidal (prolate or oblate) void subjected to uniform strain rate boundary conditions has been first studied. A Green type matrix is chosen as a prototype for investigating effects of plastic compressibility. This is carried out by using a kinematics limit analysis theory from which a closed‐form expression of the macroscopic criterion is established for the considered class of materials. These results are then extended to ductile porous materials made up of a green matrix containing randomly oriented spheroidal voids. In the framework of a two‐step homogenization procedure, the obtained results are implemented to describe the macroscopic behavior of double porous materials involving spherical voids at the microscale and randomly oriented and distributed spheroidal voids at the mesoscale. For validation purpose, the new derived criteria are assessed and validated by comparing their predictions to available upper bounds and numerical data from literature. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
285.
Quantitative assessment of the risk of submarine landslides is an essential part of the design process for offshore oil and gas developments in deep water, beyond the continental shelf. Landslides may be triggered by a reduction in shear strength of subsea sediments over a given zone, caused for example by seismic activity. Simple criteria are then needed to identify critical conditions whereby the zone of weakness could grow catastrophically to cause a landslide. A number of such criteria have been developed over the last decade, based either on ideas drawn from fracture mechanics, or considering the equilibrium of the initial weakened zone and adjacent process zones of gradually softening material. Accounting for the history of the weak zone initiation is critical for derivation of reliable propagation criteria, in particular considering dynamic effects arising from accumulating kinetic energy of the failing material, which will allow the failure to propagate from a smaller initial zone of weakened sediments. Criteria are developed here for planar conditions, taking full account of such dynamic effects, which are shown to be capable of reducing the critical length of the softened zone by 20% or more compared with criteria based on static conditions. A numerical approach is used to solve the governing dynamic equations for the sliding material, the results from which justify assumptions that allow analytical criteria to be developed for the case where the initial softening occurs instantaneously. The effect of more gradual softening is also explored. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
286.
Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono‐metamorphic processes, however, they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron‐based X‐ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite–garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated garnet clusters with increasing strain. The microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. The microtomographic observations were combined with light microscope and backscatter electron images as well as electron microprobe (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X‐ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low‐strain domain, garnet grains form a well interconnected large garnet aggregate that develops throughout the entire sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow, and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet shows a near‐random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo‐nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine‐rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localization, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.  相似文献   
287.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
288.
The Red River shear zone (RRSZ) is a major left‐lateral strike‐slip shear zone, containing a ductilely deformed metamorphic core bounded by brittle strike‐slip and normal faults, which stretches for >1000 km from Tibet through Yunnan and North Vietnam to the South China Sea. The RRSZ exposes four high‐grade metamorphic core complexes along its length. Various lithologies from the southernmost core complex, the Day Nui Con Voi (DNCV), North Vietnam, provide new constraints on the tectonic and metamorphic evolution of this region prior to and following the initial India–Asia collision. Analysis of a weakly deformed anatectic paragneiss using PT pseudosections constructed in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (MnNCKFMASHTO) system provides prograde, peak and retrograde metamorphic conditions, and in situ U–Th–Pb geochronology of metamorphic monazite yields texturally controlled age constraints. Tertiary metamorphism and deformation, overprinting earlier Triassic metamorphism associated with the Indosinian orogeny and possible Cretaceous metamorphism, are characterized by peak metamorphic conditions of ~805 °C and ~8.5 kbar between c. 38 and 34 Ma. Exhumation occurred along a steep retrograde P–T path with final melt crystallizing at the solidus at ≥~5.5 kbar at ~790 °C. Further exhumation at ~640–700 °C and ~4–5 kbar at c. 31 Ma occurred at subsolidus conditions. U–Pb geochronological analysis of monazite from a strongly deformed pre‐kinematic granite dyke from the flank of the DNCV provides further evidence for exhumation at this time. Magmatic grains suggest initial emplacement at 66.0 ± 1.0 Ma prior to the India–Asia collision, whereas grains with metamorphic characteristics indicate later growth at 30.6 ± 0.4 Ma. Monazite grains from a cross‐cutting post‐kinematic dyke within the core of the DNCV antiform provide a minimum age constraint of 25.2 ± 1.4 Ma for the termination of fabric development. A separate and significant episode of monazite growth at c. 83–69 Ma is suggested to be the result of fluid‐assisted recrystallization following the emplacement of magmatic units.  相似文献   
289.
Abstract

Unbounded stratified plane Couette flow is shown to be stable against small amplitude disturbances. The Brunt-Väisälä frequency is assumed to be constant. Both viscosity and thermal diffusion are included, and shown to be stabilizing.  相似文献   
290.
This paper presents a finite‐element (FE) model for simulating injection well testing in unconsolidated oil sands reservoir. In injection well testing, the bottom‐hole pressure (BHP) is monitored during the injection and shut‐in period. The flow characteristics of a reservoir can be determined from transient BHP data using conventional reservoir or well‐testing analysis. However, conventional reservoir or well‐testing analysis does not consider geomechanics coupling effects. This simplified assumption has limitations when applied to unconsolidated (uncemented) oil sands reservoirs because oil sands deform and dilate subjected to pressure variation. In addition, hydraulic fracturing may occur in unconsolidated oil sands when high water injection rate is used. This research is motivated in numerical modeling of injection well testing in unconsolidated oil sands reservoir considering the geomechanics coupling effects including hydraulic fracturing. To simulate the strong anisotropy in mechanical and hydraulic behaviour of unconsolidated oil sands induced by fluid injection in injection well testing, a nonlinear stress‐dependent poro‐elasto‐plastic constitutive model together with a strain‐induced anisotropic permeability model are formulated and implemented into a 3D FE simulator. The 3D FE model is used to history match the BHP response measured from an injection well in an oil sands reservoir. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号