首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   30篇
  国内免费   35篇
测绘学   1篇
大气科学   52篇
地球物理   54篇
地质学   35篇
海洋学   40篇
天文学   129篇
综合类   9篇
自然地理   16篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   7篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   11篇
  2013年   6篇
  2012年   11篇
  2011年   20篇
  2010年   16篇
  2009年   16篇
  2008年   18篇
  2007年   19篇
  2006年   25篇
  2005年   19篇
  2004年   9篇
  2003年   20篇
  2002年   11篇
  2001年   12篇
  2000年   12篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   7篇
  1995年   13篇
  1994年   8篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有336条查询结果,搜索用时 31 毫秒
121.
目的:探讨紫外分光光度法测定秋水仙碱中毒血清,为临床秋水仙碱中毒提供诊疗依据。方法取0.5 mL 血清加提取液(三氯甲烷∶甲醇=95∶5)4.0 mL。充分震荡萃取,高速离心,取有机层于另一试管中氮气吹干,取0.2 mL 甲醇溶解残渣,混匀,取50 mL 做紫外扫描。结果血清中秋水仙碱最大吸收峰(351±1)nm,浓度在5.0~40μg/mL 范围内呈线性,回归方程Y =0.0502X +0.0013,其相关系数为0.9995,回收率为83.8%~102.8%,相对标准差为3.3%~4.8%。日内、日间相对标准差分别为3.22%~4.74%和3.45%~4.66%,最低检出浓度为1.0μg/mL。结论该方法操作简便,分析快速,结果准确,为临床诊断秋水仙碱中毒提供了一个简便准确的检测方法。  相似文献   
122.
采用一步溶剂热法制备了活化半焦负载还原氧化石墨烯掺杂二氧化钛新型负载型光催化剂,即rGO-TiO2/ASC。分别考察了高温水汽活化方法和还原氧化石墨烯rGO掺杂量对光催化脱硝性能的影响,并进一步探究光照条件、烟气氧含量和烟气湿度对NO氧化脱除的作用,得出新型负载型光催化剂rGO-TiO2/ASC光催化脱硝过程主要过程。结果表明,5%水汽高温活化半焦ASC的脱硝效率最高,反应4h后可达52%。rGO负载量为8%时,负载型光催化剂rGOTiO2/ASC脱硝性能4h后转化率达70.68%。有无O2对脱硝率影响较大,有无光照对其影响次之。无H2O时,脱硝率呈现先平稳后下降的趋势。新型负载型光催化剂rGO-TiO2/ASC的脱硝过程由光催化活性组分rGO-TiO2/ASC的光催化氧化和载体部分ASC的常规氧化两部分组成。  相似文献   
123.
吴亚平  高坤山 《海洋学报》2011,33(5):146-151
阳光紫外(UV)辐射影响浮游植物光合固碳,且不同波长UV辐射的生理效应不一.本文以夏季南海近岸海域浮游植物为研究对象,采用生物加权函数(Biological weighting function,BWF,亦被称为UV辐射作用光谱)的研究方法,探讨了不同波长UV辐射对浮游植物群落光合固碳的作用.结果表明,在只有可见光情况...  相似文献   
124.
We present color ratio curves of the S-Asteroid 15 Eunomia, which have been extracted from high-precision photometric lightcurves obtained in three different VNIR wavelength bands at the Bochum Telescope, La Silla. The measured color ratio curves and near infrared spectra were used to derive a detailed surface composition model whose shape has been computed by V-lightcurve inversions. According to this analysis, the asteroid shows on one hemisphere a higher concentration of pyroxene, which causes an increased 440/700 nm and a reduced 940/700 nm reflectance ratio as well as a pronounced 2-μm absorption band. The remaining surface shows a higher concentration of olivine, leading to a reduced 440/700 nm and slightly increased 940/700 nm color ratio. In addition, we found that the maximum of the 440/700 nm color ratio curve coincide with the minimum of the 940/700 nm color ratio curve and vice versa. We demonstrate on the basis of USGS laboratory spectra that this anti-cyclical behavior can be explained by choosing Fe-rich olivine and a pyroxene with moderate Fe content as varying mineral phases. Furthermore, our observations confirm that 15 Eunomia is an irregular elongated and at least partially differentiated body. Previous spectral investigations of several smaller fragments of the Eunomia asteroid family revealed that the amount of fragments showing an increased pyroxene content exceeds the amount of pyroxene-poor fragments (Nathues, 2000, DLR Forschungsbericht, ISSN 1434-8454). This finding together with the observation that the major fraction of Eunomia's surface is enriched in olivine let us claim that a large fraction of the original pyroxene-enriched crust layer has been lost due to a major collision that created the Eunomia asteroid family. Significant spectral evidences, consistent with high concentrations of metals have been found neither in the rotational resolved spectra of 15 Eunomia nor in its fragments. This led to the conclusion that either no core consisting mainly of metals exists or that an eventual one has not been unearthed by the impact.  相似文献   
125.
L.A. Sromovsky 《Icarus》2005,173(1):284-294
Solar radiation reflected by the atmospheres of Neptune and Uranus is dominated by Rayleigh scattering at visible wavelengths, and thus subject to the effects of polarization. Ignoring these effects can lead to errors in reflected intensity of more than 9% in a clear atmosphere. But solving the full vector equation of transfer is computationally very costly, forcing approximations with limitations that are not well understood and not generally applicable to spatially resolved observations and complex atmospheric structures. Using accurate vector radiation transfer calculations, it is here shown that differences between vector and scalar results near zero phase angle have systematic dependencies on optical depth, single scattering albedo, and angle, that provide a basis for accurate approximation of the reflected intensities. With little computational cost, it is possible to calculate corrected spatially resolved scalar intensities that closely match vector intensities, with individual errors rarely exceeding 1%, and mean and RMS errors generally within a few tenths of 1%. The correction method accounts for the attenuating effects of clouds and molecular absorption.  相似文献   
126.
The plasma conditions in the solar atmosphere and, in particular, in coronal holes are summarized, before space-borne instrumentation for observing these regions in vacuum-ultraviolet light is briefly introduced with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) as example. Spectroscopic measurements of small plasma jets are then analyzed in detail. Magnetic reconnection is thought to be responsible for heating the corona of the Sun as well as accelerating the solar wind by converting magnetic energy into thermal and kinetic energies. The continuous outflow of the fast solar wind from coronal holes on ‘open’ field lines, which reach out into interplanetary space, then requires many reconnection events of very small scale sizes – most of them probably below the resolution capabilities of present-day instruments. Our observations of such an event have been obtained with the Solar and Heliospheric Observatory (SOHO) providing both high-resolution imaging and spectral information for structural and dynamical studies. We find whirling or rotating motions as well as jets with acceleration along their propagation paths in close spatial and temporal vicinity to the coronal jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
127.
L.A. Sromovsky  P.G.J. Irwin 《Icarus》2006,182(2):577-593
Near-IR absorption of methane in the 2000-9500 cm−1 spectral region plays a major role in outer planet atmospheres. However, the theoretical basis for modeling the observations of reflectivity and emission in these regions has had serious uncertainties at temperatures needed for interpreting observations of the colder outer planets. A lack of line parameter information, including ground-state energies and the absence of weak lines, limit the applicability of line-by-line calculations at low temperatures and for long path lengths, requiring the use of band models. However, prior band models have parameterized the temperature dependence in a way that cannot be accurately extrapolated to low temperatures. Here we use simulations to show how a new parameterization of temperature dependence can greatly improve band model accuracy and allow extension of band models to the much lower temperatures that are needed to interpret observations of Uranus, Neptune, Titan, and Saturn. Use of this new parameterization by Irwin et al. [Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Bowles, N., Calcutt, S.B., 2005b. Icarus. In press] has verified improved fits to laboratory observations of Strong et al. [Strong, K., Taylor, F.W., Calcutt, S.B., Remedios, J.J., Ballard, J., 1993. J. Quant. Spectrosc. Radiat. Trans. 50, 363-429] and Sihra [1998. Ph.D. Thesis, Univ. of Oxford], which cover the temperature range from 100 to 340 K. Here we compare model predictions to 77 K laboratory observations and to Uranus spectra, which show much improved agreement between observed and modeled spectral features, allowing tighter constraints on pressure levels of Uranus cloud particles, implying that most scattering contributions arise from pressures near 2 bars and 6 bars rather than expected pressures near 1.25 and 3.1 bars. Between visible and near-IR wavelengths, both cloud layers exhibit strong decreases in reflectivity that are indicative of low opacity and submicron particle sizes.  相似文献   
128.
We investigate UV and optical spectra of a sample of nearby early-type galaxies with evidence of nuclear line emission. The spectral signatures of various contributors to the UV, such as the interstellar medium and various stellar populations are analyzed and compared with the optical spectral properties. We discuss the impact of these effects on the observational properties of galaxy evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
129.
130.
We present individual spectra 0.8-2.5 μm of the leading and trailing hemispheres of Enceladus obtained with the CorMASS spectrograph on the 1.8 m Vatican Advanced Technology Telescope (VATT) at the Mount Graham International Observatory. While the absorption bands of water ice dominate the spectrum of both hemispheres, most of these bands are stronger on the leading hemisphere than the trailing hemisphere. In addition, longward of 1 μm, the continuum slope is greater on the leading hemisphere than the trailing hemisphere. These differences could be produced by the presence of particles on the trailing side that are smaller and/or microstructurally more complex than those on the leading side, consistent with the preferential erosion or structural degradation of regolith particle grains on the trailing side by magnetospheric sweeping. We also explore compositional differences between the two hemispheres by applying Hapke spectrophotometric mixture models to the spectra whose components include water ice and ammonia hydrate (1% NH3⋅H2O). We find that spectral models which include as much as 25% by weight ammonia hydrate intimately mixed with water ice and covering 80% of the illuminated area of the satellite fit the observed spectrum of both the leading and trailing hemispheres. Areal (checkerboard) mixing models of ammonia hydrate and water ice fit the leading hemisphere with 15% of the surface comprised of ammonia hydrate and the trailing hemisphere with 10% ammonia hydrate. Therefore, while these spectral data do not contain an unambiguous detection of ammonia hydrate on Enceladus, our spectral models do not preclude the presence of a modest amount of 1% NH3⋅H2O on both hemispheres. We examine spectral differences and similarities between both hemispheres and the tenuous E ring within which Enceladus orbits. The spectral resolution (R=λλ) of these CorMASS data (R∼300) is comparable to but nevertheless higher than that of the Visual-Infrared Mapping Spectrometer (VIMS) (R=225) onboard the Cassini spacecraft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号