首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   20篇
  国内免费   7篇
测绘学   1篇
大气科学   14篇
地球物理   82篇
地质学   7篇
海洋学   86篇
天文学   44篇
综合类   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   18篇
  2012年   6篇
  2011年   12篇
  2010年   12篇
  2009年   24篇
  2008年   15篇
  2007年   13篇
  2006年   11篇
  2005年   5篇
  2004年   7篇
  2003年   15篇
  2002年   7篇
  2001年   5篇
  2000年   15篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   19篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
排序方式: 共有236条查询结果,搜索用时 437 毫秒
71.
In this paper, methods for the determination of the wave mode for low frequency waves based on observed differences in phase are reviewed. Examples, using measurements made in the terrestrial foreshock and magnetosheath, are used to illustrate the application of these methods. The use of advance methods such as NARMAX modelling or genetic algorithms to identify the plasma wave mode is also discussed.  相似文献   
72.
73.
A wave-driven seawater pump, composed of a resonant and an exhaust duct joined by a variable-volume air compression chamber, is studied. The time dependent form of Bernoulli's equation, adapted to incorporate losses due to friction, vortex formation at the mouths and radiation damping, describes the pump behaviour. A dimensional analysis of the pump equations shows that a proposed scale-model will perform similar to a full-scale seawater pump. Fluid oscillations in the ducts perform similar to a damped, two-mass spring system, excited by the waves. A resonant condition can be maintained, for different wave frequencies, by varying the volume of air in the compression chamber. The dimensional analysis shows that the basic behaviour of the pump is linear and that its performance can be significantly increased by optimising the design of the duct mouths. Linear estimates of the resonant air chamber volume and flow rate through the pump are derived.  相似文献   
74.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   
75.
The MAST II WAVEMOD Project aimed at improving stochastic modelling of ocean waves and currents in coastal waters. In order to supplement existing data, two measurement campaigns were carried out, one on the Atlantic coast of Portugal, and, secondly, on the northern coast of Crete in the Mediterranean. The Portuguese measurements covered 7 months during winter 1993–1994, while off Crete, measurements started early in February 1994 and continued for 10 months. In both sites, two directional Waveriders and one non-directional Waverider were deployed along a transect out from the coast in water depths between 10 and 100 m. In addition, the Mediterranean site also incorporated measurements of mean current velocities. Available satellite data were analysed to supplement the buoy data. In this paper, both measurement campaigns are described together with a presentation of some of the data collected.  相似文献   
76.
Linear sandbanks appear in the lee of coastal headlands where the hydrodynamics are dominated by strong tidal currents and the seabed is characterized by an abundance of sands. They may develop as symmetrical sandbanks on either sides of the headland or as an unique banner bank. The present study numerically investigates the combined effects of waves and tide on the initial development of headland-associated sandbanks. A morphological model based on the coupling of the wave propagation module SWAN (Simulating WAves Nearshore) with the three-dimensional circulation module COHERENS (COupled Hydrodynamical-Ecological model for REgioNal and Shelf seas) is applied to an idealized Gaussian shaped headland for waves conditions varying in heights and directions at the offshore boundary. The coupling considers the effects of the interactions between the wave and current bottom boundary layers, namely the enhanced levels of turbulence near the bottom and the increase of the total bottom shear stress. Waves substantially modify the initial development of sandbanks formed by suspension narrowing their width and reorienting them along the side of the headland. They weakly impact the morphogenesis of sandbanks by bedload favoring on a short-time scale the growth of symmetric circular-shaped features and a central depositional spit prolonging the headland tip. Waves of transverse directions toward the tip of the headland contribute to the initiation by suspension of a well-developed feature in the headland side of low energy limiting the seabed evolution in the exposed area.  相似文献   
77.
The scour and burial of conical frustums placed on a sandy bed under waves alone (WA) and combined flows (CF) conditions was investigated. The observations indicate that equilibrium burial depth is smaller than burial of other objects such as short cylinders laying on a sand bed under equivalent hydrodynamic conditions. Truncated cone offers less resistance to the flow field due to its more round shape when compared to a horizontally placed short cylinder characterized by sharp edges. A smaller disruption to the flow field translates to less turbulent intensity and to smaller sediment transport capacity of the flow around the object and less burial. The equilibrium burial depth shows a significantly weaker dependency on the Shields parameter than on the Keulegan-Carpenter number, contrary to the case of finite short cylinders. A new empirical predictor based on the relative strength of the wave to the wave plus current velocity, the Keulegan-Carpenter number, and the Shields parameter is proposed for estimating the equilibrium burial of truncated cones under combined flows. Both the Keulegan-Carpenter number and the Shields parameter determine the width of the scour hole around the cone. The former however, is the most dominant parameter influencing the length of the scour hole.  相似文献   
78.
SWAN model predictions, initialized with directional wave buoy observations in 550-m water depth offshore of a steep, submarine canyon, are compared with wave observations in 5.0-, 2.5-, and 1.0-m water depths. Although the model assumptions include small bottom slopes, the alongshore variations of the nearshore wave field caused by refraction over the steep canyon are predicted well over the 50 days of observations. For example, in 2.5-m water depth, the observed and predicted wave heights vary by up to a factor of 4 over about 1000 m alongshore, and wave directions vary by up to about 10°, sometimes changing from south to north of shore normal. Root-mean-square errors of the predicted wave heights, mean directions, periods, and radiation stresses (less than 0.13 m, 5°, 1 s, and 0.05 m3/s2 respectively) are similar near and far from the canyon. Squared correlations between the observed and predicted wave heights usually are greater than 0.8 in all water depths. However, the correlations for mean directions and radiation stresses decrease with decreasing water depth as waves refract and become normally incident. Although mean wave properties observed in shallow water are predicted accurately, nonlinear energy transfers from near-resonant triads are not modeled well, and the observed and predicted wave energy spectra can differ significantly at frequencies greater than the spectral peak, especially for narrow-band swell.  相似文献   
79.
Most rapidly and differentially rotating disk galaxies, in which the sound speed (thermal velocity dispersion) is smaller than the orbital velocity, display graceful spiral patterns. Yet, over almost 240 yr after their discovery in M51 by Charles Messier, we still do not fully understand how they originate. In this first paper of a series, the dynamical behavior of a rotating galactic disk is examined numerically by a high-order Godunov hydrodynamic code. The code is implemented to simulate a two-dimensional flow driven by an internal Jeans gravitational instability in a nonresonant wave–“fluid” interaction in an infinitesimally thin disk composed of stars or gas clouds. A goal of this work is to explore the local and linear regimes of density wave formation, employed by Lin, Shu, Yuan and many others in connection with the problem of spiral pattern of rotationally supported galaxies, by means of computer-generated models and to compare those numerical results with the generalized fluid-dynamical wave theory. The focus is on a statistical analysis of time-evolution of density wave structures seen in the simulations. The leading role of collective processes in the formation of both the circular and spiral density waves (“heavy sound”) is emphasized. The main new result is that the disk evolution in the initial, quasilinear stage of the instability in our global simulations is fairly well described using the local approximation of the generalized wave theory. Certain applications of the simulation to actual gas-rich spiral galaxies are also explored.  相似文献   
80.
Fairly simple models can explain the emission from non-radiative shock waves in supernova remnants. This talk reviews some of the more robust diagnostics of shock parameters and some of the implications for the physics of collisionless shock waves in interstellar gas. The Hopkins Ultraviolet Telescope observed several non-radiative shocks during the ASTRO-2 mission, and the spectra have interesting implications for the physics of collisionless shocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号