首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   85篇
  国内免费   130篇
测绘学   3篇
大气科学   378篇
地球物理   226篇
地质学   83篇
海洋学   157篇
天文学   10篇
综合类   14篇
自然地理   36篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   15篇
  2020年   20篇
  2019年   12篇
  2018年   14篇
  2017年   15篇
  2016年   19篇
  2015年   14篇
  2014年   31篇
  2013年   40篇
  2012年   30篇
  2011年   43篇
  2010年   27篇
  2009年   60篇
  2008年   59篇
  2007年   68篇
  2006年   64篇
  2005年   52篇
  2004年   39篇
  2003年   35篇
  2002年   29篇
  2001年   28篇
  2000年   22篇
  1999年   21篇
  1998年   28篇
  1997年   26篇
  1996年   19篇
  1995年   7篇
  1994年   10篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1978年   1篇
  1954年   1篇
排序方式: 共有907条查询结果,搜索用时 15 毫秒
71.
In the estimation of momentum fluxes over land surfaces by the bulk aerodynamic method, no unique value of the drag coefficient (C D) is found in the literature. The drag coefficient is generally estimated from special observations at different parts of the world. In this study an attempt is made to estimate drag coefficient over the western desert sector of India using data sets of Monsoon Trough Boundary Layer Experiment (MONTBLEX) during the summer monsoon season of 1990. For this purpose, the fast and slow response data sets obtained simultaneously from a 30 m high micro-meteorological tower at Jodhpur are used. All the observations used in this study are confined to a wind speed regime of 2.5–9.0 ms−1. A comparison of momentum fluxes computed by eddy correlation (direct estimation) with profile and bulk aerodynamic (C D = 3.9 × 10−3, Garratt, 1977) methods revealed that though the nature of variation of the fluxes by all these methods is almost similar, both the indirect methods give an under-estimated value of the fluxes. The drag coefficient is estimated as a function of wind speed and surface stability by a multiple regression approach. An average value of the estimated drag coefficient is found to be of the order of 5.43 × 10−3. The estimated value ofC D is validated with a set of independent observations and found to be quite satisfactory. The recomputed momentum fluxes by bulk aerodynamic method using the estimated drag coefficient are in close agreement with the directly estimated fluxes.  相似文献   
72.
The friction velocity, the surface heat flux and the height of the Atmospheric Boundary Layer (ABL) are important parameters. In this work, vertical velocity variance ( w 2 ) and wind velocity structure parameter (C v 2 ) profiles estimated by acoustic sounder measurements are used, along with similarity relations, to estimate these parameters in the unstable Atmospheric Boundary Layer and the friction velocity in the stable one. The data were collected by two acoustic sounders with different height range and resolution under various atmospheric conditions (stability) and at two experimental sites in different terrain. The C v 2 profiles are estimated using gate difference of the vertical velocity measurements and the assumption of local isotropy. The vertical velocity data are corrected for the significant effects of noisy measurements and sampling volume averaging on the w 2 and C v 2 estimations using original techniques that are presented in this work. The results of the similarity method using acoustic sounder data are compared against estimates of the corresponding atmospheric parameters obtained from direct measurements. The comparison confirms the ability of the method to provide reasonably accurate estimates of these parameters especially in the middle of the day.  相似文献   
73.
The structure of the marine atmospheric boundarylayer and the validity ofMonin–Obukhov similarity theory over the seahave been investigated using longterm measurements. Three levels of turbulencemeasurements (at 10 m, 18 mand 26 m) at Östergarnsholm in themiddle of the Baltic Sea have beenanalysed. The results show that turbulentparameters have a strong dependenceon the actual height due to wave influence.The wind profile and thus thenormalised wind gradient are very sensitiveto wave state. The lower part of theboundary layer can be divided into three heightlayers, a wave influenced layerclose to the surface, a transition layer andan undisturbed ordinary surfacelayer; the depth of the layers is determinedby the wave state. This heightstructure can, however, not be found for thenormalised dissipation, which is onlya function of the stability, except duringpronounced swell where the actualheight also has to be accounted for. Theresults have implications for the heightvariation of the turbulent kinetic energy(TKE) budget. Thus, the imbalancebetween production and dissipation willalso vary with height according to thevariation of wave state. This, in turn,will of course have strong implicationsfor the inertial dissipation method, inwhich a parameterisation of the TKEbudget is used.  相似文献   
74.
苏中波  张廷  马耀明  贾立  文军 《地球科学进展》2006,21(12):1224-1236
文章给出了青藏高原能量水分循环研究的概况和总结,着重估计了能量平衡各分项和湍流热通量等。在能量平衡的计算基础上,尽管能量不平衡的原因解释仍有争论并且没有解决,但我们揭示了GAME/Tibet试验观测资料中能量不平衡现象。我们发现估算的潜热通量比实际观测的要高许多。然而,根据能量平衡假设的计算结果和SEBS的估算一致性很好。在此基础上可以归纳出差异主要由GAME/Tibet试验观测资料中能量不平衡引起,潜热通量的实际观测可能偏小。  相似文献   
75.
A coupled ocean and boundary layer flux numerical modeling system is used to study the upper ocean response to surface heat and momentum fluxes associated with a major hurricane, namely, Hurricane Dennis (July 2005) in the Gulf of Mexico. A suite of experiments is run using this modeling system, constructed by coupling a Navy Coastal Ocean Model simulation of the Gulf of Mexico to an atmospheric flux model. The modeling system is forced by wind fields produced from satellite scatterometer and atmospheric model wind data, and by numerical weather prediction air temperature data. The experiments are initialized from a data assimilative hindcast model run and then forced by surface fluxes with no assimilation for the time during which Hurricane Dennis impacted the region. Four experiments are run to aid in the analysis: one is forced by heat and momentum fluxes, one by only momentum fluxes, one by only heat fluxes, and one with no surface forcing. An equation describing the change in the upper ocean hurricane heat potential due to the storm is developed. Analysis of the model results show that surface heat fluxes are primarily responsible for widespread reduction (0.5°–1.5°C) of sea surface temperature over the inner West Florida Shelf 100–300 km away from the storm center. Momentum fluxes are responsible for stronger surface cooling (2°C) near the center of the storm. The upper ocean heat loss near the storm center of more than 200 MJ/m2 is primarily due to the vertical flux of thermal energy between the surface layer and deep ocean. Heat loss to the atmosphere during the storm’s passage is approximately 100–150 MJ/m2. The upper ocean cooling is enhanced where the preexisting mixed layer is shallow, e.g., within a cyclonic circulation feature, although the heat flux to the atmosphere in these locations is markedly reduced.  相似文献   
76.
A new mean-field theory of turbulent convection is developed based on the idea that only the small-scale region of the spectrum is considered as turbulence, whereas its large-scale part, including both regular and semi-organized motions, is treated as the mean flow. In the shear-free regime, this theory predicts the convective wind instability, which causes the formation of large-scale semi-organized motions in the form of cells. In the presence of wind shear, the theory predicts another type of instability, which causes the formation of large-scale semi-organized structures in the form of rolls and the generation of convective-shear waves propagating perpendicular to the convective rolls. The spatial characteristics of these structures, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This theory might be useful for understanding the origin of large-scale cells and rolls observed in the convective boundary layer and laboratory turbulent convection  相似文献   
77.
The Evaporation at Grid/Pixel Scale (EVA_GRIPS) project was realised in order to determine the area-averaged evaporation over a heterogeneous land surface at the scale of a grid box of a regional numerical weather prediction or climate model, and at the scale of a pixel of a satellite image. EVA_GRIPS combined surface-based and airborne measurements, satellite data analysis, and numerical modelling activities. A mesoscale field experiment, LITFASS-2003, was carried out in the heterogeneous landscape around the Meteorological Observatory Lindenberg (MOL) of the German Meteorological Service in May and June, 2003. The experiment was embedded in the comprehensive, operational measurement program of the MOL. Experimental determination of surface fluxes on a variety of spatial scales was achieved by employing micrometeorological flux stations, scintillometers, a combination of ground-based remote sensing instruments, and the Helipod, a turbulence probe carried by a helicopter. Surface energy fluxes were also derived from satellite data. Modelling work included the use of different Soil–Vegetation–Atmosphere Transfer schemes, a large-eddy simulation model and three mesoscale atmospheric models. The paper gives an overview on the background of EVA_GRIPS, and on the measurements and meteorological conditions during LITFASS-2003. A few general results are discussed.  相似文献   
78.
Processing and quality control of flux data during LITFASS-2003   总被引:1,自引:0,他引:1  
Different aspects of the quality assurance and quality control (QA/QC) of micrometeorological measurements were combined to create a comprehensive algorithm which was then applied to experimental data from LITFASS-2003 (Lindenberg Inhomogeneous Terrain—Fluxes between Atmosphere and Surface: a long term Study). Eddy-covariance measurements of the latent heat flux were the main focus of the QA/QC efforts. The results of a turbulence sensor intercomparison experiment showed deviations between the different eddy-covariance systems on the order of 15%, or less than 30 W m−2, for the latent heat flux and 5%, or less than 10 W m−2, for the sensible heat flux. In order to avoid uncertainties due to the post-processing of turbulence data, a comprehensive software package was used for the analysis of experimental data from LITFASS-2003, including all necessary procedures for corrections and quality control. An overview of the quality test results shows that for most of the days more than 80% of the available latent heat flux data are of high quality so long as there are no instrumental problems. The representativeness of a flux value for the target land-use type was analysed using a stochastic footprint model. Different methods to calculate soil heat fluxes at the surface are discussed and a sensitivity analysis is conducted to select the most robust method for LITFASS-2003. The lack of energy balance closure, which was found for LITFASS-2003, can probably be attributed to the presence of low-frequency flux contributions that cannot be resolved with an averaging time of 30 min. Though the QA/QC system has been developed for the requirements of LITFASS-2003, it can also be applied to other experiments dealing with similar objectives.  相似文献   
79.
This work re-examines and further develops an analytical solution for the deposition swath of heavy particles released in the atmosphere from an elevated source over uniform terrain, correcting the particle diffusivity for the crossing trajectory effect. The revised (approximate) analytical solution proves to be accurate within 20% over a wide range of micrometeorological conditions and particle size, despite its neglect of the turbulence component of the deposition flux. It compares very satisfactorily with experimental data and with the simulations of a Lagrangian stochastic model, provided the variable U(H)/w g ≤7 (ratio of the mean horizontal wind speed at source height to the particle settling velocity). In this domain of validity, simple formulae relating the statistics of the deposition swath to U(H)/w g are derived.  相似文献   
80.
Typical numerical weather and climate prediction models apply parameterizations to describe the subgrid-scale exchange of moisture, heat and momentum between the surface and the free atmosphere. To a large degree, the underlying assumptions are based on empirical knowledge obtained from measurements in the atmospheric boundary layer over flat and homogeneous topography. It is, however, still unclear what happens if the topography is complex and steep. Not only is the applicability of classical turbulence schemes questionable in principle over such terrain, but mountains additionally induce vertical fluxes on the meso-γ scale. Examples are thermally or mechanically driven valley winds, which are neither resolved nor parameterized by climate models but nevertheless contribute to vertical exchange. Attempts to quantify these processes and to evaluate their impact on climate simulations have so far been scarce. Here, results from a case study in the Riviera Valley in southern Switzerland are presented. In previous work, measurements from the MAP-Riviera field campaign have been used to evaluate and configure a high-resolution large-eddy simulation code (ARPS). This model is here applied with a horizontal grid spacing of 350 m to detect and quantify the relevant exchange processes between the valley atmosphere (i.e. the ground “surface” in a coarse model) and the free atmosphere aloft. As an example, vertical export of moisture is evaluated for three fair-weather summer days. The simulations show that moisture exchange with the free atmosphere is indeed no longer governed by turbulent motions alone. Other mechanisms become important, such as mass export due to topographic narrowing or the interaction of thermally driven cross-valley circulations. Under certain atmospheric conditions, these topographical-related mechanisms exceed the “classical” turbulent contributions a coarse model would see by several times. The study shows that conventional subgrid-scale parameterizations can indeed be far off from reality if applied over complex topography, and that large-eddy simulations could provide a helpful tool for their improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号