首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3753篇
  免费   617篇
  国内免费   1317篇
测绘学   220篇
大气科学   2249篇
地球物理   643篇
地质学   864篇
海洋学   572篇
天文学   574篇
综合类   109篇
自然地理   456篇
  2024年   23篇
  2023年   58篇
  2022年   115篇
  2021年   140篇
  2020年   178篇
  2019年   188篇
  2018年   157篇
  2017年   205篇
  2016年   163篇
  2015年   159篇
  2014年   223篇
  2013年   315篇
  2012年   226篇
  2011年   198篇
  2010年   214篇
  2009年   284篇
  2008年   252篇
  2007年   329篇
  2006年   321篇
  2005年   242篇
  2004年   217篇
  2003年   193篇
  2002年   156篇
  2001年   153篇
  2000年   131篇
  1999年   128篇
  1998年   135篇
  1997年   86篇
  1996年   84篇
  1995年   80篇
  1994年   82篇
  1993年   55篇
  1992年   31篇
  1991年   27篇
  1990年   20篇
  1989年   21篇
  1988年   12篇
  1987年   20篇
  1986年   10篇
  1985年   7篇
  1984年   9篇
  1983年   6篇
  1982年   12篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   10篇
  1976年   2篇
排序方式: 共有5687条查询结果,搜索用时 15 毫秒
71.
A decision support system (DSS) has been developed to assist expert and non-expert users in the evaluation and selection of eco-engineering strategies for slope protection. This DSS combines a qualitative hazard assessment of erosion and mass movements with a detailed catalogue of eco-engineering strategies for slope protection of which the suitability is evaluated in relation to the data entered. The slope decision support system (SDSS) is a knowledge based DSS in which knowledge is stored in frames containing rules that can evaluate the available information for a project, stored as project specific information (PSI) in a data file. The advantages of such a system are that it accepts incomplete information and that the qualitative nature of the information does not instil the user with a sense of unjustified exactitude. By its multidisciplinary and progressive nature, the DSS will be of value during the initial stages of an eco-engineering project when data collection and the potential of different eco-engineering strategies are considered. The accent of the output of the DSS is on the application of eco-engineering strategies for slope protection as an environmentally-friendly solution aiding sustainable development. For its acceptance within the engineering community, the DSS needs to prove its predictive capacity. Therefore, its performance has been benchmarked against successful and unsuccessful cases of slope stabilisation using eco-engineering. The target audience and the areas of application of this DSS are reviewed and the strategies for further development in this area suggested.  相似文献   
72.
The three most important components necessary for functioning of an operational flood warning system are: (1) a rainfall measuring system; (2) a soil moisture updating system; and, (3) a surface discharge measuring system. Although surface based networks for these systems can be largely inadequate in many parts of the world, this inadequacy particularly affects the tropics, which are most vulnerable to flooding hazards. Furthermore, the tropical regions comprise developing countries lacking the financial resources for such surface-based monitoring. The heritage of research conducted on evaluating the potential for measuring discharge from space has now morphed into an agenda for a mission dedicated to space-based surface discharge measurements. This mission juxtaposed with two other upcoming space-based missions: (1) for rainfall measurement (Global Precipitation Measurement, GPM), and (2) soil moisture measurement (Hydrosphere State, HYDROS), bears promise for designing a fully space-borne system for early warning of floods. Such a system, if operational, stands to offer tremendous socio-economic benefit to many flood-prone developing nations of the tropical world. However, there are two competing aspects that need careful assessment to justify the viability of such a system: (1) cost-effectiveness due to surface data scarcity; and (2) flood prediction uncertainty due to uncertainty in the remote sensing measurements. This paper presents the flood hazard mitigation opportunities offered by the assimilation of the three proposed space missions within the context of these two competing aspects. The discussion is cast from the perspective of current understanding of the prediction uncertainties associated with space-based flood prediction. A conceptual framework for a fully space-borne system for early-warning of floods is proposed. The need for retrospective validation of such a system on historical data comprising floods and its associated socio-economic impact is stressed. This proposal for a fully space-borne system, if pursued through wide interdisciplinary effort as recommended herein, promises to enhance the utility of the three space missions more than what their individual agenda can be expected to offer.  相似文献   
73.
74.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   
75.
Governmental authorities are forced by law to make decisions within the framework of European, national and regional directives in the fields of spatial planning, groundwater and environmental protection. These tasks can be supported by a decision-support system, which integrates data from various sources and helps to make decision processes more effective and transparent. Basic work for such a decision support system has been done in a transnational and interdisciplinary project (Interreg II C: KATER), including metadata definition, metadata system, cartographic tools and GIS tools. The direct integration of these tools and information in the decision process will be implemented in the next few years (project KATER II).  相似文献   
76.
长江下游一次大暴雨的中尺度模拟分析   总被引:2,自引:1,他引:2  
谢义明  周国华  徐双柱 《气象》2005,31(11):55-60
运用中尺度数值模式(MM5V3.6)对2004年6月25日长江下游地区一次大暴雨天气过程进行了数值模拟,结合天气形势和卫星云图对此次过程进行了分析.结果表明:在东北冷涡和西太平洋副热带高压两大天气尺度系统的作用下,西南低空急流的再次加强和中低层切变线共同作用是此次大暴雨过程的主要原因.螺旋度分析表明,在不均匀的强上升气流的作用下,涡旋的水平分量向垂直分量转化是此次强降水的可能机制之一.  相似文献   
77.
Hydro-ecological modelers often use spatial variation of soil information derived from conventional soil surveys in simulation of hydro-ecological processes over watersheds at mesoscale (10–100 km2). Conventional soil surveys are not designed to provide the same level of spatial detail as terrain and vegetation inputs derived from digital terrain analysis and remote sensing techniques. Soil property layers derived from conventional soil surveys are often incompatible with detailed terrain and remotely sensed data due to their difference in scales. The objective of this research is to examine the effect of scale incompatibility between soil information and the detailed digital terrain data and remotely sensed information by comparing simulations of watershed processes based on the conventional soil map and those simulations based on detailed soil information across different simulation scales. The detailed soil spatial information was derived using a GIS (geographical information system), expert knowledge, and fuzzy logic based predictive mapping approach (Soil Land Inference Model, SoLIM). The Regional Hydro-Ecological Simulation System (RHESSys) is used to simulate two watershed processes: net photosynthesis and stream flow. The difference between simulation based on the conventional soil map and that based on the detailed predictive soil map at a given simulation scale is perceived to be the effect of scale incompatibility between conventional soil data and the rest of the (more detailed) data layers at that scale. Two modeling approaches were taken in this study: the lumped parameter approach and the distributed parameter approach. The results over two small watersheds indicate that the effect does not necessarily always increase or decrease as the simulation scale becomes finer or coarser. For a given watershed there seems to be a fixed scale at which the effect is consistently low for the simulated processes with both the lumped parameter approach and the distributed parameter approach.  相似文献   
78.
利用由美国NOAA系列卫星观测的OLR资料研究了影响华东地区热带气旋年频数(记为ATC)与热带对流场的关系,结果表明两者存在密切的联系:(1)当华东地区热带气旋年频数ATC为异常偏多(少)时,ITCZ位置累积距平为正(负)值,即ITCZ位置异常偏北(南);(2)利用OLR设计了Walker综合指数WI,该指数的强弱可以反映ATC的异常情况,即当ATC为异常偏多(少)时,walker环流圈异常强(弱);(3)OLR距平累积量场能较好的表征ATC异常年份所对应的低纬度及中高纬地区大气环流的配置,其可以作为预测影响华东地区热带气旋年频数的强信号。  相似文献   
79.
新疆冰雹天气过程的基本特征   总被引:5,自引:0,他引:5  
通过对新疆39a冰雹天气资料的普查,得到76次系统性冰雹天气过程和1279次局地冰雹天气过程,局地冰雹天气的发生远远多于系统性雹天气。冰雹天气过程与地形密切相关,主要发生在山区,冰雹天气以1天为主,多发生于夏季,系统性冰雹天气均由中尺度高压造成。  相似文献   
80.
通过引人泊松括号,分析了无限维Hamilton的性质,并将其推广到广义Hamilton系统,且从理论和实用角度讨论了这类广义Hamilton系统的辛格式构造问题,从而为辛几何算法在一般的时间发展方程的数值求解提供新的具体途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号