首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   42篇
  国内免费   34篇
测绘学   24篇
大气科学   16篇
地球物理   113篇
地质学   90篇
海洋学   94篇
天文学   7篇
综合类   11篇
自然地理   63篇
  2024年   3篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   8篇
  2019年   11篇
  2018年   3篇
  2017年   13篇
  2016年   15篇
  2015年   10篇
  2014年   22篇
  2013年   24篇
  2012年   12篇
  2011年   18篇
  2010年   24篇
  2009年   18篇
  2008年   22篇
  2007年   29篇
  2006年   23篇
  2005年   19篇
  2004年   8篇
  2003年   12篇
  2002年   11篇
  2001年   8篇
  2000年   16篇
  1999年   13篇
  1998年   9篇
  1997年   9篇
  1996年   2篇
  1995年   5篇
  1994年   8篇
  1993年   9篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
排序方式: 共有418条查询结果,搜索用时 15 毫秒
101.
The “greatest lake period” means that the lakes are in the stage of their maximum areas. As the paleo lake shorelines are widely distributed in the lake basins on the Tibetan Plateau, the lake areas during the “greatest lake period” may be inferred by the last highest lake shorelines. They are several, even tens times larger than that at present. According to the analyses of tens of lakes on the Plateau, most dating data fell into the range of 40-25 ka BP, some lasted to 20 ka BP. It was corresponded to the stage 3 of marine isotope and interstitial of last glaciation. The occurrence of maximum areas of lakes marked the very humid period on the Plateau and was also related to the stronger summer monsoon during that period.  相似文献   
102.
潮汐盐沼环境特点及高分辨率海面变化有孔虫标尺   总被引:1,自引:0,他引:1  
潮汐盐沼是海洋边缘海环境的最边缘部分,是海陆过渡的真正边界。盐沼环境因素具明显的垂直分带性,各环境参数变化是典型的海洋或陆地不可相比的,盐沼坡度平缓,由海向陆的环境变化在这里分异清楚;沉积中垂向变化平面上得到极大的放大等。据国外研究,盐沼环境控制着有孔虫的特征和分布,利于盐沼有孔虫的垂直分带恢复古海平面变化,精确到±20cm,甚至±5cm,这在海面变化、环境演变、全球变化研究上有重要意义。  相似文献   
103.
We studied sediment cores from four Florida (USA) lakes that have received groundwater hydrologic supplements (augmentation) for >30 years to maintain lake stage. Top samples (0–4 cm) from sediment cores taken in Lakes Charles, Saddleback, Little Hobbs, and Crystal had 226Ra activities of 44.9, 17.5, 7.6, and 8.5 dpm g−1, respectively, about an order of magnitude greater than values in deeper, older deposits. The surface sample from Lake Charles yielded the highest 226Ra activity yet reported from a Florida lake core. Several lines of evidence suggest that groundwater augmentation is responsible for the high 226Ra activities in recent sediments: (1) 226Ra activity in cores increased recently, (2) the Charles, Crystal, and Saddleback cores display 226Ra/210Pb disequilibrium at several shallow depths, suggesting 226Ra entered the lakes in dissolved form, (3) cores show recent increases in Ca, which, like 226Ra, is abundant in augmentation groundwater, and (4) greater Sr concentrations are associated with higher 226Ra activities in recent Charles and Saddleback sediments. Sr concentrations in Eocene limestones of the deep Floridan Aquifer are high relative to Sr concentrations in surficial quartz sands around the lakes. Historical water quality inferences for the lakes were based on diatom assemblages in sediments. Recent alkalization in Lakes Charles, Saddleback, Little Hobbs, and Crystal was inferred from weighted-averaging calibration (WACALIB). The lakes also show recent trophic state increases based on WACALIB-derived estimates for limnetic total P. Although residential and agricultural sources might contribute to increased P loading, P in augmentation waters probably has had significant influence on eutrophication. Dystrophic diatoms were abundant in the early history of Lakes Saddleback, Little Hobbs, and Crystal, which suggests that these lakes contained more tannic waters during the past than at present, perhaps as a consequence of greater inflows from surrounding wetlands. Ionic content of lake waters increased, as indicated by diatom autecological analysis. Recent geochemical and biological changes detected in cores from these lakes probably are a result of deliberate groundwater augmentation, although inputs of groundwater pumped for agricultural and residential development in the watersheds also might have contributed to limnological changes.  相似文献   
104.
105.
Recognition that Earth/Sun orbital changes are the basic cause for Quaternary climatic variations provides a context for explaining global environmental changes, many of which are preserved in the stratigraphic and geomorphic record of lakes. Paleoclimatic numerical models suggest the mechanisms. In subtropical latitudes such as North Africa the enhanced summer insolation culminating about 10 000 years ago resulted in the increased monsoonal rains that explain the widespread expansion of lakes in now-desert basins. But in the American Southwest lake expansion dates to 18 000–15 000 years ago, when storm tracks were displaced to the south by the ice sheets—themselves a product of earlier orbital changes. The dynamics in the resopnse of different components of the natural system to climatic change are recorded in the stratigraphy of lake sediments, not only by their pollen content as a manifestation of the regional vegetation but also by their microfossils and chemical composition as reflections of lake development.This is the 10th in a series of papers published in this special AMQUA issue. These papers were presented at the 1994 meeting of the American Quaternary Association held 19–22 June, 1994, at the University of Minnesota, Minneapolis, Minnesota, USA. Dr Linda C. K. Shane served as guest for these papers.  相似文献   
106.
107.
One-dimensional radiative-convective and photochemical models are used to examine the effects of enhanced CO2 concentrations on the surface temperature of the early Earth and the composition of the prebiotic atmosphere. Carbon dioxide concentrations of the order of 100–1000 times the present level are required to compensate for an expected solar luminosity decrease of 25–30%, if CO2 and H2O were the only greenhouse gases present. The primitive stratosphere was cold and dry, with a maximum H2O volume mixing ratio of 10–6. The atmospheric oxidation state was controlled by the balance between volcanic emission of reduced gases, photo-stimulated oxidation of dissolved Fe+2 in the oceans, escape of hydrogen to space, and rainout of H2O2 and H2CO. At high CO2 levels, production of hydrogen owing to rainout of H2O2 would have kept the H2 mixing ratio above 2×10–4 and the ground-level O2 mixing ratio below 10–11, even if no other sources of hydrogen were present. Increased solar UV fluxes could have led to small changes in the ground-level mixing ratios of both O2 and H2.  相似文献   
108.
用于大范围虚拟地形环境的动态场景管理方法   总被引:6,自引:0,他引:6  
由于硬件条件的限制,超大规模的地形数据不可能在开始阶段全部载入内存进行3维场景渲染。文中提出了一种用于大范围海量地形数据3维显示的动态场景管理方法,该方法按照规则网格贴片对虚拟场景进行剖分,在漫游时根据视点参数建立可见和潜在可见缓冲区来确定当前应该调度和进行渲染的网格单元;在场景漫游时对各个规则网格单元建立具有多细节层次的四叉树,实现了对整个场景的多细节层次渲染。  相似文献   
109.
Stratigraphic changes in the remains of Bosmina longirostris from a lake with an introduced sockeye salmon population and a lake with a natural salmon run on Kodiak Island demonstrated markedly different responses to past fluctuations in salmon populations. In both lakes, there was a positive correlation between the density of Bosmina microfossils and the abundance of sockeye salmon. However, opposite size trends were observed in the two lakes. In Karluk Lake, which has a native sockeye salmon population, Bosmina mean carapace lengths were largest at high salmon densities, and mean mucro and antennule lengths were also large, suggesting strong predation pressure from cyclopoid copepods, and less intense pressure from juvenile sockeye salmon. As salmon-derived nutrients are important in driving primary productivity in this system, changes in zooplankton productivity track salmon escapement, but grazing pressure on Bosmina from juvenile salmon is less important than that from cyclopoid copepods. In Frazer Lake, a lake with an introduced salmon population, Bosmina morphologies were smallest during periods of high sockeye salmon in the lake, suggesting much stronger predation effects from sockeye salmon due to the suppression of Cyclops columbianus. Latent development of compensatory mechanisms and the delayed recovery of copepod populations to salmon introductions has resulted in zooplankton populations that are still recovering from shifts in fish populations that occurred decades earlier. The differential response of Bosmina populations between the natural and manipulated lakes suggests that care must be taken when attempting to extrapolate results from whole-lake manipulations and short-term experiments to natural systems.  相似文献   
110.
Changes in lake water temperature and trophic states were inferred using chironomid fossil assemblages from Lac Long Inférieur (Southern Alps, France). In the Late Glacial, a colder period, possibly analogous to the Younger Dryas, is characterised by a peak in Micropsectra, a cold stenothermic taxon. The increase in temperatures during the Late Glacial interstadial is indicated by a decrease in the percentages of cold stenothermic taxa (Tanytarsus lugens/Corynocera oliveri grp.) and by an increase in taxa linked to the development of vegetation in the littoral zone. The beginning of the Holocene is marked by the presence of taxa adapted to warmer and more eutrophic waters. During the Holocene, the progressive warming of the climate and increase in lake trophic status were indicated by the increase of eutrophic and warmer water indicators. An increase in tributary inflow into Lac Long Inférieur was also inferred by the increase in rheophilous taxa, reflecting increased snowmelt. During the Subatlantic, the composition of the chironomid spectra suggests a re-cooling of the climate and/or a decrease in lake trophic status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号