首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   42篇
  国内免费   134篇
测绘学   3篇
大气科学   57篇
地球物理   52篇
地质学   254篇
海洋学   67篇
天文学   2篇
综合类   20篇
自然地理   39篇
  2023年   6篇
  2022年   8篇
  2021年   7篇
  2020年   10篇
  2019年   13篇
  2018年   9篇
  2017年   18篇
  2016年   14篇
  2015年   11篇
  2014年   20篇
  2013年   23篇
  2012年   18篇
  2011年   23篇
  2010年   23篇
  2009年   22篇
  2008年   20篇
  2007年   19篇
  2006年   33篇
  2005年   27篇
  2004年   16篇
  2003年   14篇
  2002年   13篇
  2001年   17篇
  2000年   10篇
  1999年   14篇
  1998年   7篇
  1997年   16篇
  1996年   8篇
  1995年   3篇
  1994年   6篇
  1993年   13篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1978年   4篇
排序方式: 共有494条查询结果,搜索用时 31 毫秒
451.
以共和盆地东部风成沉积剖面(MS剖面)磁化率为依据,运用四次回归方程重建了剖面形成时的年均气温和降水量,确定近12 ka以来共和盆地年均温度–0.37℃~5.09℃,多年平均温度为2.5℃,降水量267.91~550.77 mm,多年平均降水量为418.62 mm。对常量元素氧化物(SiO_2、Al_2O_3和Fe_2O_3)含量进行分析,结果表明:1)古土壤层SiO_2含量均低于风成砂层, Al_2O_3和Fe_2O_3含量均高于风成砂层; 2)风成砂层SiO_2含量S3>S5>S1,Al_2O_3和Fe_2O_3含量S5>S3>S1,揭示S3层形成时期冷干, S5层次之, S1层干旱程度较弱;土壤层SiO_2含量S4>S2>S6, Al_2O_3和Fe_2O_3含量为S6>S2>S4,表明S6形成时期气候温湿, S2层次之, S4层温湿程度较低; 3)分层氧化物变异系数大小表明S2和S6层形成时气候波动剧烈, S1和S3层形成时期气候较稳定。以常量元素氧化物含量、温度和降水为依据,结合14C测年,重建了近12 ka以来共和盆地环境演变过程:11.9 ka BP以前为凉干期,11.9~9.7 ka BP为温湿期, 9.7~8.0 ka BP为冷干期, 8.0~4.8 ka BP为暖湿期, 4.8~2.9 ka BP为凉干期, 2.9 ka BP以来为温润期。马四剖面记录的环境演变过程与青藏高原其他区域环境演变过程具有相似性,表明共和盆地环境演变与区域环境变化具有同步性。  相似文献   
452.
萨拉乌苏河流域与MIS2相同时代的MGS2地层段记录了5.5个由风成砂与河流相或湖沼相构成的沉积旋回,通过对各沉积旋回的主要氧化物分析表明:河湖相中Al2O3、TOFE、K2O、MgO、CaO、Na2O、TiO含量通常明显高于风成砂,而SiO2含量则呈现相反的变化,构成了与沉积旋回相对应的5.5个主要氧化物变化旋回。结合各主要氧化物的化学迁移特性和剖面所在区域的地貌特征进行分析,认为该剖面的主要氧化物变化旋回是气候波动的反映,一个主要氧化物含量变动旋回指示了一个干冷-暖湿旋回,也即一个冬夏季风先后演替的气候旋回。MGS2持续的时间仅为12 ka,一个冬夏季风环境的变化大致平均仅需要2 ka,一个冬季风或者夏季风环境的平均持续时间大约1 ka。显然,这是一个千年尺度的环境变化。研究还表明,MGS2气候波动与晚冰期气候变化以及相关的Heinrich事件具有良好的对应关系。可以推断,MGS2记录的千年尺度环境变化是全球环境变化在本区域的反映。  相似文献   
453.
Aluminum oxide, which could be an alternative filter media for phosphorus uptake from aqueous solution, was selected as an adsorbent for the isotherm study of phosphorus uptake from aqueous solution. Batch method was adopted to investigate the adsorption behavior of phosphorus onto aluminum oxide. The Langmuir, Freundlich, and Redlich–Peterson isotherms were used to analyze the experimental data by both the linear and nonlinear regression methods. The adsorption experiment was conducted at various temperatures, to choose the appropriate method and obtain the creditable adsorption parameters for phosphorus uptake studies. The results indicated that the nonlinear regression method might be a better way to compare the best‐fitting isotherm and obtain the parameters for the adsorption of phosphorus onto aluminum oxide. Both the Redlich–Peterson and the Freundlich isotherms have high coefficients of determination for the adsorption of phosphorus onto aluminum oxide at various temperatures. In addition, a new relationship between the Redlich–Peterson and the Freundlich isotherm parameters was presented.  相似文献   
454.
Response of nitrous oxide N20 sediment/air flux to nitrogen addition was assessed in mangrove (Rhizophora mangle) sediments. Fluxes were enhanced with both ammonium and nitrate loading. Greatest fluxes (52 micromol m(-2) h(-1)) were obtained with ammonium addition and saturation was achieved with additions of 0.9 mol m(-2). Maximum flux following ammonium addition was 2785 times greater than control plots and 4.5 times greater during low tide than with equivalent ammonium addition at high tide. Nitrate enrichment resulted in exponential growth, with maximal mean flux of 36.7 micromolm(-2) h(-1) at 1.9 molm(-2); saturation was not achieved. Differential response to ammonium and nitrate, and to tide and elevation, indicate that microbial nitrification is responsible for most of the observed gas flux. Mangrove sediments constitute an important source of global atmospheric N20 and increases in nitrogen loading will lead to significant increases in the flux of this atmospherically active gas.  相似文献   
455.
Kinetics and products of the gas-phase reactions of dimethylsulphide (DMS), dimethylsulphoxide (DMSO) and dimethylsulphone (DMSO2) with Br atoms and BrO radicals in air have beeninvestigated using on-line Fourier Transform Infrared Spectroscopy (FT-IR) as analytical technique at 740 ± 5 Torr total pressure and at 296 ± 3 K in a480 L reaction chamber. Using a relative rate method for determining the rate constants; the following values (expressed in cm3molecule–1 s–1) were found: kDMS+Br = (4.9 ±1.0) ×10–14, kDMSO + Br < 6 × 10–14,kDMSO 2 + Br 1 × 10–15,kDMSO + BrO = (1.0 ± 0.3) × 10–14 andkDMSO 2 + BrO 3 × 10–15 (allvalues are given with one on the experimental data). DMSO, SO2, COS, CH3SBr andCH3SO2Br were identified as the main sulphur containing products of the oxidation of DMS by Br atoms. From the reaction between DMSO and Br atoms, DMSO2and CH3SO2Br were the only sulphur containing products thatwere identified. DMSO, DMSO2 and SO2 were identified as themain sulphur containing products of the reaction between DMS and BrO.DMSO2 was found to be the only product of the reaction between DMSO and BrO. For the reactions of DMSO2 with Br and BrO no products were identified because the reactions were too slow.The implications of these results for atmospheric chemistry are discussed.  相似文献   
456.
We observed a direct reaction of metallic iron with water to form iron hydride and iron oxide, 3Fe + H2O–>2FeHx + FeO, at pressures from 6 GPa to 84 GPa and temperatures above 1,000 K in diamond anvil cell (DAC). Iron hydride is dhcpFeHx or -FeHx, and iron oxide has the rhombohedral or B1 structure at pressures at least up to 37 GPa. The formation of an assembly composed of dhcpFeHx and FeO with the B8 structure was observed at 84 GPa. In primordial Earth, water formed by dehydration of the low temperature primitive materials reacts with metallic iron in the high temperature component to form iron hydride FeHx and iron oxide FeO. The former would be incorporated in the iron forming the core. Thus hydrogen could be an important element of the Earths core. This reaction would be essential for transport of hydrogen into the core in the accretion stage of the Earth.  相似文献   
457.
锰银氧化矿选冶工艺的研究现状及进展   总被引:1,自引:0,他引:1  
锰银氧化矿在中国是一种重要的矿床类型 ,但在目前经济技术条件下仍属于难选冶和无商业价值的矿石类型。文章对国内外锰银氧化矿选冶技术的研究现状和进展进行了比较全面的评述  相似文献   
458.
The sorption of lead (II) and cadmium (II) on seven shales belonging to the Proterozoic Vindhyan basin, central India, and a black cotton soil, Mumbai, India, was studied and compared with sorbent geochemistry. The sorption equilibrium studies were conducted under completely mixed conditions in batch reactors (pH=5.0 and ionic strength= 0.01 M) at room temperature. The Freundlich model provided better fits to the experimental data compared to Langmuir model. High cadmium and lead sorption was observed for the calcareous shales with greater than 5% CaCO3. The Freundlich isotherm parameter relating to sorption capacity, i.e., KF, yielded a strong correlation with the calcium carbonate and calcium oxide content across the various geosorbents studied. The observed sorption pattern may be attributed to complex formation of CaCO3 with Pb2+ and Cd2+ leading to surface precipitation. Moreover, the Ca2+ present in the sorbents may also involve in ion exchange reaction with lead and cadmium.  相似文献   
459.
The Ernest Henry Fe oxide Cu–Au (IOCG) deposit (>ca. 1.51 Ga) is hosted by breccia produced during the waning stages of an evolving hydrothermal system that formed a number of tens of metres to a kilometre scale, pre- and syn-ore alteration halos, although no demonstrable patterns have been attributed to fluids expelled through the outflow zones. However, the recognition of a population of hypersaline fluid inclusions representing the ‘spent’ fluids after Cu–Au deposition at Ernest Henry provides the basis to model the geochemical characteristics of the deposit's outflow zones. Geochemical modeling at 300 °C was undertaken at both high and low fluid/rock ratios via FLUSH models involving three host rock types: (1) granite, (2) calc–silicate rock, and (3) graphitic schist. In models run at high fluid/rock ratios, all rock types are essentially fluid-buffered, and produce an albite–quartz–hematite–barite-rich assemblage, although in low fluid–rock environments, the pH, redox, and geochemical character of the host rock exerts a greater influence on the mineralogy of the alteration assemblages (e.g., andradite, Fe–chlorite, and magnetite). Significant sulphide mineralization was predicted in graphitic schist where sphalerite occurred in both low- and high-porosity models, which indicates the possibility of an association between high-temperature IOCG mineralization and lower temperature base metal mineralization.Cooling experiments (from 300 to 100 °C) using the ‘spent fluids’ predict early high-T (300–200 °C) Na-, Ca-, Fe-, and Mn-rich, magnetite-bearing hydrothermal associations, whereas with cooling to below 200 °C, and with progressive fluid–rock interaction, the system produces rhodochrosite-bearing, hematite–quartz–muscovite–barite-rich assemblages. These results show that the radical geochemical and mineralogical changes associated with cooling and progressive fluid influx are likely to be accompanied by major transformations in the geophysical expression (e.g., spectral and magnetic character) of the alteration in the outflow zone, and highlight the potential link between magnetite- and hematite-bearing IOCG hydrothermal systems.  相似文献   
460.
氧化条件对样品有机碳同位素测定的影响因素讨论   总被引:1,自引:2,他引:1  
有机碳同位素在全球变化、古气候和古环境恢复研究中的应用日益广泛和深人。有机碳同位素分析的基本原理是在高温下过量的氧气中将样品有机物氧化为CO2,通过分离纯化得到纯净的CO2气体送人质谱测定其护δ13C值。 在已发表文章中,对于有机碳同位素的研究,人们所采用的氧化温度和氧化时间都有很大差异,但很少系统地研究有机碳同位素分析氧化条件对样品有机碳同位素测定结果的影响。为了解不同的氧化条件是否会造成样品的有机碳同位素分馏,以及不同氧化条件对样品有机碳同位素测定结果的影响程度,笔者采用封管法,选取了不同类型的样品(有机碳标准、植物、表土、黄土以及红粘土等),采用不同的氧化温度:500℃,550℃,650℃,750℃,850℃,900℃以及950℃等,恒温2.5 h,然后炉冷至室温。 实验结果表明:氧化温度为850℃,恒温时间为2.5 h,对于有机碳标准、植物、表土和较年轻的黄土样品,足以确保样品有机质氧化充分,δ13C值达到稳定,不会产生同位素分馏。 但对于深层黄土和红粘土样品,氧化温度为850℃,恒温时间为2.5 h,其δ13C值不能达到一个稳定值,仍有偏正趋势。这可能是由于深层样品成岩化作用强,样品中含有一些含碳的矿物包裹体,随温度上升到一定程度,才逐渐分解,释放出气体。对于深层黄土和红粘土样品,采用850℃甚至更高的氧化温度其δ13C值仍未达到稳定,合适的氧化温度需进一步的研究来确定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号