首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3854篇
  免费   831篇
  国内免费   2214篇
测绘学   220篇
大气科学   507篇
地球物理   1537篇
地质学   3568篇
海洋学   589篇
天文学   22篇
综合类   195篇
自然地理   261篇
  2024年   11篇
  2023年   77篇
  2022年   165篇
  2021年   137篇
  2020年   232篇
  2019年   317篇
  2018年   283篇
  2017年   192篇
  2016年   303篇
  2015年   304篇
  2014年   378篇
  2013年   393篇
  2012年   375篇
  2011年   406篇
  2010年   330篇
  2009年   377篇
  2008年   336篇
  2007年   305篇
  2006年   341篇
  2005年   276篇
  2004年   230篇
  2003年   188篇
  2002年   148篇
  2001年   113篇
  2000年   92篇
  1999年   101篇
  1998年   93篇
  1997年   76篇
  1996年   69篇
  1995年   53篇
  1994年   52篇
  1993年   43篇
  1992年   34篇
  1991年   17篇
  1990年   21篇
  1989年   8篇
  1988年   8篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1983年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有6899条查询结果,搜索用时 31 毫秒
261.
黏弹性阻尼器是一种典型的被动控制装置,它可以通过黏弹性材料的剪切滞回耗能起到提高结构阻尼和减小结构地震或风振响应的作用.自主研发了损失系数不小于0.5的黏弹性材料,并基于此材料研发了新型国产黏弹性阻尼器.通过对黏弹性阻尼器足尺试件进行不同应变幅值、加载频率工况下的基本力学性能试验、以及低周疲劳性能试验,研究了不同工况下...  相似文献   
262.
首先回顾了基于孔压静力触探(CPTU)测试确定前期固结压力的方法,通过连云港海相粘土场地进行的CPTU试验资料,以室内固结试验得到的前期固结压力作为参考值评估了经验方法预测前期固结压力的有效性。最简单的方法是直接建立前期固结压力和净锥尖阻力的关系,同时也是最有效的方法。  相似文献   
263.
对京九线路基粉土用GDS三轴仪进行固结不排水剪试验,研究不同围压、含水量、压实度下压实粉土样的应力-应变关系。结果表明:压实粉土在低围压下为应变软化,高围压下为应变硬化,存在一个屈服应力;含水量和压实度对粉土强度和应力-应变关系影响显著,随着含水量的减小、压实度的增大,压实粉土样强度增大,应力-应变曲线上升。对围压小于屈服应力的应变软化曲线,用常规的土的软化关系式进行拟和;对围压大于屈服应力的应变硬化曲线,用邓肯-张模型进行拟和;这二者的结合能描述压实粉土的应力-应变关系曲线,效果良好。  相似文献   
264.
黄土路堑边坡变形破坏机理的三轴试验研究   总被引:1,自引:0,他引:1  
通过原状黄土的减压三轴压缩试验,研究了黄土边坡不同深度不同含水量土体的应力-应变关系,并与原状黄土的常规三轴试验结果进行了比较,发现减压三轴试验能合理地模拟和解释开挖卸荷作用下黄土边坡土体的变形与破坏过程。试验结果表明:坡脚开挖卸荷时,黄土边坡中浅层非饱和黄土易出现应变软化或塑性流动,强度较低,易产生较大变形,而深层饱和黄土仅在高围压下发生应变硬化,强度增加,在中低围压时均发生应变软化现象。分析认为黄土边坡特殊的工程地质条件,使得黄土边坡的特定部位在开挖卸荷作用下常形成了不利于土体稳定的含水量和围压组合,导致坡体特定部位的土体变形破坏,进而诱发边坡的变形破坏;开挖卸荷作用下黄土边坡变形破坏的力学机制应为蠕滑-压致拉裂或牵引式滑坡。  相似文献   
265.
Numerous constitutive models of granular soils have been developed during the last few decades. As a consequence, how to select an appropriate model with the necessary features based on conventional tests and with an easy way of identifying parameters for geotechnical applications has become a major issue. This paper aims to discuss the selection of sand models and parameters identification by using genetic algorithm. A real‐coded genetic algorithm is enhanced for the optimization with high efficiency. Models with gradually varying features (elastic‐perfectly plastic modelling, nonlinear stress–strain hardening, critical state concept and two‐surface concept) are selected from numerous sand models as examples for optimization. Conventional triaxial tests on Hostun sand are selected as the objectives in the optimization. Four key points are then discussed in turn: (i) which features are necessary to be accounted for in constitutive modelling of sand; (ii) which type of tests (drained and/or undrained) should be selected for an optimal identification of parameters; (iii) what is the minimum number of tests that should be selected for parameter identification; and (iv) what is the suitable and least strain level of objective tests to obtain reliable and reasonable parameters. Finally, a useful guide, based on all comparisons, is provided at the end of the discussion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
266.
Fluvial flood events have substantial impacts on humans, both socially and economically, as well as on ecosystems (e.g., hydroecology and pollutant transport). Concurrent with climate change, the seasonality of flooding in cold environments is expected to shift from a snowmelt‐dominated to a rainfall‐dominated flow regime. This would have profound impacts on water management strategies, that is, flood risk mitigation, drinking water supply, and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large‐scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality and defining related key drivers therefore is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explores changes in flood seasonality across near‐natural catchments in Scandinavia using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt‐dominated catchments with a single peak occurring in spring and early summer (March through June), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows with 5–35% of the catchments showing significant changes at the 5% significance level. Seasonal mean daily flows corroborate those findings with higher percentages (5–60%) of the catchments showing statistically significant changes. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt‐dominated to rainfall‐dominated with consistent changes towards earlier timing of the flood peak (significant for 25% of the catchments). Regionally consistent patterns suggest a first‐order climate control as well as a local second‐order catchment control, which causes inter‐seasonal variability in the streamflow response.  相似文献   
267.
Abstract

Results of a study on change detection in hydrological time series of annual maximum river flow are presented. Out of more than a thousand long time series made available by the Global Runoff Data Centre (GRDC) in Koblenz, Germany, a worldwide data set consisting of 195 long series of daily mean flow records was selected, based on such criteria as length of series, currency, lack of gaps and missing values, adequate geographical distribution, and priority to smaller catchments. The analysis of annual maximum flows does not support the hypothesis of ubiquitous growth of high flows. Although 27 cases of strong, statistically significant increase were identified by the Mann-Kendall test, there are 31 decreases as well, and most (137) time series do not show any significant changes (at the 10% level). Caution is advised in interpreting these results as flooding is a complex phenomenon, caused by a number of factors that can be associated with local, regional, and hemispheric climatic processes. Moreover, river flow has strong natural variability and exhibits long-term persistence which can confound the results of trend and significance tests.  相似文献   
268.
Monthly sediment load and streamflow series spanning 1963–2004 from four hydrological stations situation in the main stem of the Yangtze River, China, are analysed using scanning t‐test and the simple two‐phase linear regression scheme. Results indicate significant changes in the sediment load and streamflow from the upper reach to the lower reach of the Yangtze River. Relatively consistent positive coherency relations can be detected between streamflow and sediment load in the upper reach and negative coherency in the middle and lower reaches. Interestingly, negative coherency is found mainly for larger time scales. Changes in sediment load are the result mainly of human influence; specifically, the construction of water reservoirs may be the major cause of negative coherency. Accentuating the human influence from the upper to the lower reach results in inconsistent correlations between sediment load and streamflow. Decreasing sediment load being observed in recent years has the potential to alter the topographical properties of the river channel and the consequent development and recession of the Yangtze Delta. Results of this study are of practical significance for river channel management and evaluation of the influence of human activities on the hydrological regimes of large rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
269.
Trend identification is a substantial issue in hydrologic series analysis, but it is also a difficult task in practice due to the confusing concept of trend and disadvantages of methods. In this article, an improved definition of trend was given as follows: ‘a trend is the deterministic component in the analysed data and corresponds to the biggest temporal scale on the condition of giving the concerned temporal scale’. It emphasizes the intrinsic and deterministic properties of trend, can clearly distinguish trend from periodicities and points out the prerequisite of the concerned temporal scale only by giving which the trend has its specific meaning. Correspondingly, the discrete wavelet‐based method for trend identification was improved. Differing from those methods used presently, the improved method is to identify trend by comparing the energy difference between hydrologic data and noise, and it can simultaneously separate periodicities and noise. Furthermore, the improved method can quantitatively estimate the statistical significance of the identified trend by using proper confidence interval. Analyses of both synthetic and observed series indicated the identical power of the improved method as the Mann–Kendall test in assessing the statistical significance of the trend in hydrologic data, and by using the former, the identified trend can adaptively reflect the nonlinear and nonstationary variability of hydrologic data. Besides, the results also showed the influences of three key factors (wavelet choice, decomposition level choice and noise content) on discrete wavelet‐based trend identification; hence, they should be carefully considered in practice. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
270.
Soil water repellency has been conventionally considered as a fire‐induced effect, but an increasing number of studies have suggested that natural background repellency occurs in many soil types, and many of them have suggested that water repellency can be re‐established over time after being destroyed. An experimental fire was conducted to study changes of the soil surface during the first 18 months following intense burning. The main objectives of this paper are as follows: (1) to investigate in situ water repellency changes at three soil depths (0, 2 and 4 cm) immediately after burning; (2) to evaluate the medium‐term evolution of water repellency under field conditions; and (3) to outline the main hydrological consequences of these changes. Also, different water repellency tests (water drop penetration time, ethanol percentage test (EPT) and contact angle (CA) between water drops and the soil surface) were carried out for comparison purposes. Field experiments showed that soil water repellency was partly destroyed after intense burning. Changes were relatively strong at the soil surface, but diminished progressively with depth. Levels of water repellency were practically re‐established 18 months after burning. This suggests that water repellency in the studied area is not necessarily a consequence of fire, but can instead be a natural attribute. Finally, although limited in time, destruction of soil water repellency has important consequences for runoff flow generation and soil loss rates, and, indirectly, for water quality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号