首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   46篇
  国内免费   83篇
测绘学   17篇
大气科学   77篇
地球物理   294篇
地质学   219篇
海洋学   184篇
天文学   22篇
综合类   23篇
自然地理   120篇
  2024年   4篇
  2023年   4篇
  2022年   12篇
  2021年   8篇
  2020年   12篇
  2019年   23篇
  2018年   18篇
  2017年   23篇
  2016年   19篇
  2015年   17篇
  2014年   39篇
  2013年   55篇
  2012年   18篇
  2011年   36篇
  2010年   45篇
  2009年   54篇
  2008年   54篇
  2007年   69篇
  2006年   52篇
  2005年   50篇
  2004年   27篇
  2003年   23篇
  2002年   32篇
  2001年   17篇
  2000年   31篇
  1999年   23篇
  1998年   27篇
  1997年   23篇
  1996年   19篇
  1995年   21篇
  1994年   14篇
  1993年   13篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   15篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
排序方式: 共有956条查询结果,搜索用时 250 毫秒
931.
The information acquired from Argo floats such as temperature and salinity profiles is used to study water mass properties in the Arabian Sea from 2002 to 2004. An examination of water mass structure at different locations reveals the presence of high salinity water of marginal seas in the Arabian Sea. During the southwest monsoon season, the impact of the early onset of southwesterlies is noticed in the upper ocean temperature and salinity structure over the Western Arabian Sea (WAS) during 2002. Surface density variations are found to be more during the southwest monsoon season due to strong wind forcing. Argo temperature and salinity profiles showed that the winter cooling and the formation of Arabian Sea High Salinity Water (ASHSW) over the Northern Arabian Sea (NAS) began during the second half of November within the upper 100 m depth. In the NAS, the Persian Gulf Water (PGW) salinity is above 36, as PGW moves towards the south along isopycnal layer of 26.6σθθ is potential density) salinity decreases. It is observed that the PGW high salinity water is not continuously prominent over the WAS in 2002 and in 2003. In the WAS the 27.2σθ isopycnal layer depth, corresponding to Red Sea Water (RSW), did not exactly follow the pattern of isotherms as is seen in the northern and eastern Arabian Sea. The variability related to RSW salinity is due to the underwater currents. The present study also confirms that RSW is prominent in the southeast Arabian Sea at the potential density of 27.2 with a maximum in summer monsoon compared to other seasons. The observed peak in the salinity at 27.2 density level during the spring intermonsoon is due to the influence of winter time spreading of RSW to the south of Socotra in 2002. Westward movement of Argo floats in the region east of Socotra during the winter is evident in both the observations and model studies. Water mass properties change when they move away from their source region due to the consistent horizontal advection. The changes in the water mass properties along the Argo float trajectory are confirmed by comparing with the climatological mean monthly values from the World Ocean Atlas 2001 data set.  相似文献   
932.
Four cores recovered within the framework of the INTERPOL Project have been analysed for their grain size and geochemistry; sediment accumulation rates (SARs) were also determined from 210Pb and 137Cs profiles. Two cores are representative of the Axios and Aliakmon Rivers depositional environment, whilst the third core represents the Pinios River province; the fourth core represents an environment of outer shelf relict sands. Apparent SARs ranged between 0.667 g cm−2 yr−1 (Axios and Aliakmon Rivers) and 0.414 g cm−2 yr−1 (Pinios River). Trawling activities and biomixing are critical processes that may be responsible for the mixing of the surface sediments, as observed from the excess 210Pb profiles. The thickness of the surface mixed layer was 4.5 cm in the vicinity of Axios and Aliakmon Rivers and in the area of Pinios River, 3.75 cm on the outer shelf and 1 cm in the area where no trawling was observed. Sediment accumulation appeared to be regulated by variations in the riverine discharge, shelf transport pathways and winnowing processes. Major element variations, such as Si, Al, Ti, V and Ni, were dominated by terrigenous supply as aluminosilicate minerals and quartz, whereas most Ca and Sr were biogenic. Si/Al and Ca/Al ratios have been used to express changes in sediment accumulation and winnowing. Redox processes were depicted by Mn, which showed an increase in the depth of its redoxcline, from 1 cm in inshore stations to 2 cm on the outer shelf. Si/Al ratios follow the Ca/Al ratios and can be used to assess percentage winnowing in the sediment. Increases in these ratios indicate a decrease in sediment input rates and are seen in the upper parts of most of the cores. Anthropogenic or ‘excess’ metal contents have been calculated from Zn/V and Pb/V ratios. Their distributions in the cores showed that by far the highest contamination is associated with the Axios River output, whilst sediments influenced by the Pinios River were relatively uncontaminated.  相似文献   
933.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
934.
The significance of flow in the matrix of the Chalk unsaturated zone, in comparison with flow in fractures, has been the subject of much debate. In this article, important elements of the literature are discussed in detail and several simple modelling analyses based on steady-state flow are presented. A study of the sensitivity of solute spreading to fracture spacing in models that ignore matrix flow shows that this latter assumption is generally incompatible with observed solute profiles, unless unrealistically small fracture spacings are assumed. The effect of air phase continuities (e.g. bedding planes) on matrix flow has also been examined. These discontinuities are frequently interrupted by points of connectivity between matrix blocks. An issue therefore is the relationship between connectivity and its effect on inter-block conductance. A simple analysis of the Laplace equation shows that just 1% connectivity represents an effective pathway equivalent to 18% of the local rock hydraulic conductivity. Obviously, when there is no fracture flow, solute spreading is significantly reduced. However, dual permeability model simulations show that matrix flow reduces solute spreading in the presence of persistent fracture flow. All of the above studies suggest that flow in the matrix of the Chalk unsaturated zone is significant and that ignoring it may result in a serious misunderstanding of the system.  相似文献   
935.
Dendritic crystal morphologies occur in a number of igneousrocks and are thought to originate from the rapid growth ofcrystals, yet many examples of dendritic morphologies are foundin plutonic igneous rocks where cooling rates should be low.Results from crystal size distribution (CSD) measurements onharrisitic olivines from Rum, Scotland, combined with estimatedolivine growth rates, suggest that the characteristic skeletalhopper and branching olivines of harrisitic cumulates that areup to centimetres long, may have exceptionally short crystalgrowth times (several hours to several hundreds of days). This,together with very low calculated nucleation densities for harrisiticolivine, supports the interpretation of harrisite being a disequilibriumtexture, developed in response to supersaturation of the magmain olivine. We propose that this supersaturation arose throughundercooling of thin picrite sheets emplaced along the Rum magmachamber floor, beneath cooler resident magma. It is envisagedthat the picrite sheets were largely free of suspended olivinecrystals. Coupled with the olivine-enriched composition of themelt and the increasing cooling rate, this allowed homogeneousnucleation of olivine to set in at deeper undercooling and greaterolivine supersaturation than if there had been plentiful suspendedolivines to act as heterogeneous nuclei. The enhanced supersaturationcaused rapid growth of olivine once nucleation began, with skeletaland dendritic shapes. It is suggested that the observed, interlayeredsequences of harrisite and cumulus peridotite found throughoutthe Rum Layered Suite are a result of multiple episodes of harrisitecrystallization resulting from picrite emplacement that alternatedwith periods of crystal growth and accumulation in the mainbody of magma at lesser degrees of undercooling. KEY WORDS: crystal size distribution; harrisite; crystal growth rates; Rum Layered Suite  相似文献   
936.
渤海地区^210Pb、^137Cs同位素测年的研究现状   总被引:9,自引:1,他引:9  
近百年来环渤海地区的沉积作用是影响该区近现代地质环境变化的重要因素。本文收集了该区迄今公开发表的用于确定现代沉积速率的84组^210Pb、^137Cs柱状剖面(包括210Pb样柱52组,^210Pb、^137Cs样柱32组),其中海区39组,潮间带及沿海低地地区45组。环渤海地区的^210Pb放射性活度的深度分布曲线主要表现为3种形式:理想指数衰变型、近等幅摆动型和海洋特殊动力事件影响型。根据由陆向海方向沉积速率的变化,可初步划分为沿岸低沉积速率带、开放潮坪高沉积速率带及海区低沉积速率区;区域性差异则表现为渤海湾开放潮坪区上部由北(蓟运河口)向南(老狼坨子)沉积速率表现为高-低-高,辽东湾从其西侧的锦州湾向东至辽河河口的开放潮坪地区,沉积速率递减,黄河三角洲地区及其附近海域属于间歇式快速沉积区,莱州湾西部为高速沉积区。  相似文献   
937.
In this article, through the comparison of knowledge relating to historical earthquakes with the understanding of present-day earthquake mechanics and overall GPS slip rates in the eastern Mediterranean region, it has been possible to obtain an idea of how frequently large earthquakes may be expected in some parts of the region. It has also been possible to make an assessment from these early events of slip rates over a long period of time for the Gulf of Corinth in Greece, the Marmara Sea in Turkey and the Dead Sea Fault System, as well as deriving long-term magnitude–frequency relations for these same regions.
It has been demonstrated that slip rates calculated from historical data are in general comparable to those calculated from GPS measurements and field observations, while the size of historical earthquakes and their uncertainty can be quantified. This permits a more reliable estimation of the long-term hazard, the calculation of which is the concern of the engineering seismologist. It has also been shown that in most cases large earthquakes are less frequent when they are estimated from long-term data sets rather than from the instrumental period making the notion of recurrence time and of hazard assessment, questionable.
This study focuses on some of the few areas in the world for which long-term macroseism information exists and which facilitate this kind of analysis.  相似文献   
938.
Channel incision is part of denudation, drainage-network development, and landscape evolution. Rejuvenation of fluvial networks by channel incision often leads to further network development and an increase in drainage density as gullies migrate into previously non-incised surfaces. Large, anthropogenic disturbances, similar to large or catastrophic “natural” events, greatly compress time scales for incision and related processes by creating enormous imbalances between upstream sediment delivery and available transporting power. Field examples of channel responses to antrhopogenic and “natural” disturbances are presented for fluvial systems in the mid continent and Pacific Northwest, USA, and central Italy. Responses to different types of disturbances are shown to result in similar spatial and temporal trends of incision for vastly different fluvial systems. Similar disturbances are shown to result in varying relative magnitudes of vertical and lateral (widening) processes, and different channel morphologies as a function of the type of boundary sediments comprising the bed and banks. This apparent contradiction is explained through an analysis of temporal adjustments to flow energy, shear stress, and stream power with time. Numerical simulations of sand-bed channels of varying bank resistance and disturbed by reducing the upstream sediment supply by half, show identical adjustments in flow energy and the rate of energy dissipation. The processes that dominate adjustment and the ultimate stable geometries, however, are vastly different, depending on the cohesion of the channel banks and the supply of hydraulically-controlled sediment (sand) provided by bank erosion.The non-linear asymptotic nature of fluvial adjustment to incision caused by channelization or other causes is borne out in similar temporal trends of sediment loads from disturbed systems. The sediments emanating from incised channels can represent a large proportion of the total sediment yield from a landscape, with erosion from the channel banks generally the dominant source. Disturbances that effect available force, stream power or flow energy, or change erosional resistance such that an excess of flow energy occurs can result in incision. Channel incision, therefore, can be considered a quintessential feature of dis-equilibrated fluvial systems.  相似文献   
939.
A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffusive–reactive partial differential equations is formulated for two-layer conceptual model of aerobic–anaerobic sediments. Oxidation reactions are modeled as first-order rate processes and nitrate is assumed to be consumed entirely in the anoxic portion of the sediments. The sediments are delineated into a thin oxygenated surface layer whose thickness is equal to the oxygen penetration depth, and a lower, but much thicker anoxic layer. The sediments are separated from the overlying water column by a relatively thin boundary layer through which mass transfer is diffusion controlled. Transient solutions are derived using the method of Laplace transform and Green’s function, which relate pore-water concentrations of the constituents to their concentrations in the bulk water and to the flux of decomposable settling organic matter. Steady-state pore-water concentrations are also obtained including expressions for the extent of methane saturation zone and methane gas flux. A relationship relating the sediment oxygen demand (SOD) to bulk water oxygen is derived using the two-film concept, which in combination with the depth-integrated solutions forms the basis for predicting the extent of oxygen penetration in the sediment. Iterative procedure and simplification thereof are proposed to estimate the extent of methane saturation zone and thickness of the aerobic layer as functions of time. Sensitivity of steady-state solutions to key parameters illustrates sediment processes interactions and synergistic effects. Simulations indicate that for a relatively thin diffusive boundary layer, d, oxygen uptake is limited by biochemical processes inside the sediments, whereas for a thick boundary layer oxygen transfer through the diffusive boundary layer is limiting. The results show an almost linear relationship between steady-state sediment oxygen demand and bulk water oxygen. For small d methane and nitrogen fluxes are sediment controlled, whereas for large d they are controlled by diffusional transfer through the boundary layer. It is shown that the two-layer model solution converges to the one-layer model (anaerobic layer) solution as the thickness of the oxygenated layer approaches zero, and that the transient solutions approach asymptotically their corresponding steady-state solutions.  相似文献   
940.
A new numerical–analytical Eulerian procedure is proposed for the solution of convection-dominated problems in the case of existing scalar potential of the flow field. The methodology is based on the conservation inside each computational elements of the 0th and 1st order effective spatial moments of the advected variable. This leads to a set of small ODE systems solved sequentially, one element after the other over all the computational domain, according to a MArching in Space and Time technique. The proposed procedure shows the following advantages: (1) it guarantees the local and global mass balance; (2) it is unconditionally stable with respect to the Courant number, (3) the solution in each cell needs information only from the upstream cells and does not require wider and wider stencils as in most of the recently proposed higher-order methods; (4) it provides a monotone solution. Several 1D and 2D numerical test have been performed and results have been compared with analytical solutions, as well as with results provided by other recent numerical methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号