首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1418篇
  免费   423篇
  国内免费   127篇
测绘学   31篇
大气科学   17篇
地球物理   1009篇
地质学   433篇
海洋学   49篇
天文学   6篇
综合类   54篇
自然地理   369篇
  2024年   1篇
  2023年   11篇
  2022年   26篇
  2021年   35篇
  2020年   31篇
  2019年   51篇
  2018年   50篇
  2017年   69篇
  2016年   72篇
  2015年   69篇
  2014年   92篇
  2013年   67篇
  2012年   63篇
  2011年   61篇
  2010年   71篇
  2009年   82篇
  2008年   102篇
  2007年   125篇
  2006年   137篇
  2005年   96篇
  2004年   78篇
  2003年   86篇
  2002年   78篇
  2001年   49篇
  2000年   46篇
  1999年   47篇
  1998年   37篇
  1997年   39篇
  1996年   37篇
  1995年   29篇
  1994年   20篇
  1993年   32篇
  1992年   18篇
  1991年   16篇
  1990年   12篇
  1989年   11篇
  1988年   9篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1954年   5篇
排序方式: 共有1968条查询结果,搜索用时 31 毫秒
71.
72.
Image processing of 2D resistivity data for imaging faults   总被引:6,自引:0,他引:6  
A methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images. This method is applied on several synthetic models and on field data set acquired on three experimental sites during the European project PALEOSIS where trenches were dug. The results presented in this work are valid for electrical tomographies data collected with a Wenner-alpha array and computed with an l1 norm (blocky inversion) as optimization method. For the synthetic cases, three geometric contexts are modelled: a vertical and a dipping fault juxtaposing two different geological formations and a step-like structure. A superficial layer can cover each geological structure. In these three situations, the method locates the synthetic faults and layer boundaries, and determines fault displacement but with several limitations. The estimated fault positions correlate exactly with the synthetic ones if a conductive (or no superficial) layer overlies the studied structure. When a resistive layer with a thickness of 6 m covers the model, faults are positioned with a maximum error of 1 m. Moreover, when a resistive and/or a thick top layer is present, the resolution significantly decreases for the fault displacement estimation (error up to 150%). The tests with the synthetic models for surveys using the Wenner-alpha array indicate that the proposed methodology is best suited to vertical and horizontal contacts. Application of the methodology to real data sets shows that a lateral resistivity contrast of 1:5–1:10 leads to exact faults location. A fault contact with a resistivity contrast of 1:0.75 and overlaid by a resistive layer with a thickness of 1 m gives an error location ranging from 1 to 3 m. Moreover, no result is obtained for a contact with very low contrasts (1:0.85) overlaid by a resistive soil. The method shows poor results when vertical gradients are greater than horizontal ones. This kind of image processing technique should be systematically used for improving the objectiveness of tomography interpretation when looking for limits between geological objects.  相似文献   
73.
Using arrival data of the body waves recorded by seismic stations, we reconstructed the velocity structure of the crust and upper mantle beneath the southeastern edge of the Tibetan Plateau and the northwestern continental margin of the South China Sea through a travel time tomography technique. The result revealed the apparent tectonic variation along the Ailao Shan-Red River fault zone and its adjacent regions. High velocities are observed in the upper and middle crust beneath the Ailao Shan-Red River fault zone and they reflect the character of the fast uplifting and cooling of the metamorphic belt after the ductile shearing of the fault zone, while low velocities in the lower crust and near the Moho imply a relatively active crust-mantle boundary beneath the fault zone. On the west of the fault zone, the large-scale low velocities in the uppermost mantle beneath western Yunnan prove the influence of the mantle heat flow on volcano, hot spring and magma activities, however, the upper mantle on the eas  相似文献   
74.
The resolution of whole Earth seismic tomographic models   总被引:2,自引:0,他引:2  
  相似文献   
75.
76.
Optimal parametrization of tomographic models   总被引:1,自引:0,他引:1  
  相似文献   
77.
78.
79.
青藏高原南部天然地震体波的层析反演图像描绘出拉萨地体内在15~90km深度内低速异常的分布特征。在研究速度结构的基础上,根据熔融程度与纵波波速呈倒数衰减的特性,论证了拉萨地体中低速体的出现与壳内的局部熔融有关。壳内局部熔融则来源于板块俯冲、地壳增厚产生的热而非幔源侵入所造成。同时,也发现了在拉萨以东中下地壳低速体有向东发展的趋势。大面积部分熔融层分布的深度范围约在15~35km处。另外,据藏南地区的SKS波分裂时间延迟很小的特点,推测藏南地幔中可能不存在各向异性,也就是没有足够的热源使各向异性矿物的品格重新定位。这从另一方面佐证了部分熔融仅存在于地壳内而不是地幔中。  相似文献   
80.
A multi-layered aquifer, typical of riverbank alluvial deposits in Korea, was studied to determine the hydrologic properties. The geologic logging showed that the subsurface of the study site was comprised of four distinctive hydrogeologic units: silt, sand, highly weathered and fresh bedrock layers. The electrical resistivity survey supplied information on lateral extension of hydrogeologic strata only partially identified by a limited number of the geologic loggings. The laboratory column tracer test for the recovered core of the sand layer resulted in a hydraulic conductivity of 5.00×10−2 cm/s. The slug tests performed in the weathered rock layer yielded hydraulic conductivities of 4.32–7.72×10−4 cm/s. Hydraulic conductivities for the sand layer calculated from the breakthrough curves of bromide ranged between 2.08×10−3 and 2.44×10−2 cm/s with a geometric mean of 6.89×10−3 cm/s, which is 7 times smaller than that from the laboratory column experiment. The trend of increasing hydraulic conductivity with an increase in tracer travel length is likely a result of the increased likelihood of encountering a high conductivity zone as more of the aquifer is tested. The combined hydrogeologic site characterization using hydraulic tests, tracer tests, and column test with geologic loggings and geophysical survey greatly enhanced the understanding of the hydrologic properties of the multi-layered alluvial aquifer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号