首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   81篇
  国内免费   297篇
测绘学   12篇
大气科学   126篇
地球物理   222篇
地质学   771篇
海洋学   92篇
天文学   8篇
综合类   23篇
自然地理   51篇
  2024年   8篇
  2023年   18篇
  2022年   20篇
  2021年   27篇
  2020年   17篇
  2019年   40篇
  2018年   23篇
  2017年   39篇
  2016年   36篇
  2015年   24篇
  2014年   50篇
  2013年   38篇
  2012年   34篇
  2011年   58篇
  2010年   54篇
  2009年   83篇
  2008年   103篇
  2007年   68篇
  2006年   72篇
  2005年   73篇
  2004年   50篇
  2003年   36篇
  2002年   38篇
  2001年   35篇
  2000年   30篇
  1999年   25篇
  1998年   39篇
  1997年   24篇
  1996年   17篇
  1995年   13篇
  1994年   19篇
  1993年   16篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   10篇
  1988年   5篇
  1987年   6篇
  1985年   3篇
  1984年   8篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   5篇
  1977年   1篇
排序方式: 共有1305条查询结果,搜索用时 15 毫秒
61.
We present a 16-month record of ozone (O3), carbon monoxide (CO), total reactive nitrogen (NOy), sulphur dioxide (SO2), methane (CH4), C2 – C8 non-methane hydrocarbons (NMHCs), C1 – C2 halocarbons, and dimethyl sulfide (DMS) measured at a southern China coastal site. The study aimed to establish/update seasonal profiles of chemically active trace gases and pollution tracers in subtropical Asia and to characterize the composition of the `background' atmosphere over the South China Sea (SCS) and of pollution outflow from the industrialized Pearl River Delta (PRD) region and southern China. Most of the measured trace gases of anthropogenic origin exhibited a winter maximum and a summer minimum, while O3 showed a maximum in autumn which is in contrast to the seasonal behavior of O3 in rural eastern China and in many mid-latitude remote locations in the western Pacific. The data were segregated into two groups representing the SCS background air and the outflow of regional continental pollution (PRD plus southern China), based on CO mixing ratios and meteorological conditions. NMHCs and halocarbon data were further analyzed to examine the relationships between their variability and atmospheric lifetime and to elucidate the extent of atmospheric processing in the sampled air parcels. The trace gas variability (S) versus lifetime (τ) relationship, defined by the power law, Slnx = Aτb, (where X is the trace gas mixing ratio) gives a fit parameter A of 1.39 and exponent b of 0.42 for SCS air, and A of 2.86 and b of 0.31 for the regional continental air masses. An examination of ln[n-butane]/ln[ethane] versus ln[propane]/ln[ethane] indicates that their relative abundance was dominated by mixing as opposed to photochemistry in both SCS and regional outflow air masses. The very low ratios of ethyne/CO, propane/ethane and toluene/benzene suggest that the SCS air mass has undergone intense atmospheric processing since these gases were released into the atmosphere. Compared to the results from other polluted rural sites and from urban areas, the large values of these species in the outflow of PRD/southern China suggest source(s) emitting higher levels of ethyne, benzene, and toluene, relative to light alkanes. These chemical characteristics could be unique indicators of anthropogenic emissions from southern China.  相似文献   
62.
North End Lake is a polluted and eutrophic freshwater system located in Port Elizabeth, South Africa. Since the lake is expected to be used for recreational/tourist purposes by 2010, a rehabilitation program will have to be designed. For this reason, we retrieved a sediment core from the central region of the lake to decipher the effect of historical human impacts on the water body. Pre-disturbance paleolimnological inferences indicate that the lake was likely mesotrophic. After ∼1831, when sheep farming activities were undertaken in the catchment, increases in trophic state and changes in sediment composition were observed. After ∼1937, increases in trace metal levels, organic matter, spheroidal carbonaceous particles (SCP) and changes in sediment composition were recorded. The system became eutrophic as indicated by the dominance of the diatom Actinocyclus normanii, a cosmopolitan species often observed in systems where water quality has been dramatically degraded. The conditions worsened after 1986 because of the construction of a storm-water retention system, which intentionally channeled storm-water runoff into the lake. Because of this, extremely high values of fecal coliforms (i.e. 2 × 106 every 100 ml) have been measured in the water column. The paleolimnological information identified the sharp increase in organic content in the uppermost section of the core, and this could be correlated to the operation of the storm-water retention system. Therefore, as an immediate management measure, we suggest that the storm-water retention system should either no longer be utilized, or the storm-water runoff should be treated before disposal into the lake. In addition, an effective sewage system has to be constructed.  相似文献   
63.
西藏地热气体的地球化学特征及其地质意义   总被引:9,自引:3,他引:9  
赵平  谢鄂军等 《岩石学报》2002,18(4):539-550
西藏水热活动是青苦恼高原碰撞造山过程的产物,其成因类型、物质来源和时空分布与青藏高原的隆升过程密切相关,地热流体(气、液相)中携带有中上地壳乃至地幔物质的深部信息。西藏地热流体可以区分出CO2型和N2型两类气体,其中绝大多数的地热气体样品属于CO2型气体,而典型的N2型气体则较少。前者具有岩浆热源和深循环两种成因类型,后者都是深循环成因。西藏气体样品中的He含量变化范围非常宽,最高的可达到1.5%。在门士热泉,首次检测到地幔He组分,这说明西藏地壳深处有地幔物质侵位。根据He同位素组成推断,羊八井、谷露等处的地壳熔融体中约有3%的地幔组分。西藏地热气体中的N2和Ar组分主要是大气成因,CO2组分大多以海相碳酸盐岩成因为主,混有少量有机沉积物成因CO2。当Log(H2/Ar)处于-0.8-0.3的区间时,H2/Ar地热温度计可以良好地指示热储层的温度范围。实际调查表明:西藏水热活动区大多分布在斑公错-怒江链合带以南地区,高温水热活动区主要出现在雅鲁藏布缝合带和那曲-羊八井-亚东活动构造带沿线。  相似文献   
64.
痕量铜的催化动力学光度分析进展   总被引:1,自引:1,他引:1  
综述了1996-2000年测定痕量铜的催化动力学光度法,包括催化显色光度法、催化褪色光度法、阻抑动力学光度法、催化荧光光度法、催化化学发光光度法。  相似文献   
65.
钱青  孙晓猛 《岩石学报》2001,17(3):385-394
北祁连九个泉蛇绿岩中的玄武岩的MORB,根据其地质产状和地球化学特征又可以分为两部分,剖面下部的玄武岩为N-MORB,上部的玄武岩主要为E-MORB。玄武岩多数具有Nb负异常,从下向上,九个朱武岩的Th,Nb,LREE,Zr等含量及(La/Yb)N,(La/Sm)N,Ce/Zr,Zr/Y,Th/.La,Th/Yb比值逐渐增加,并伴随着Y,Yb,Lu,Sc含量,Zr/Nb和La/Nb比值以及εEd(t)的逐渐减小,不相容元素比值及εNd(t)之间具有很好的相关性,上述特征反映不均一地幔部分熔融过程中N-MORB源区和富集地幔之间的混合作用,微量元素和Nd同位素地球化学特征表明九个泉蛇绿岩形成于弧后盆地中的海山环境,玄武岩的化学成分在垂向上的变化记录了海山生长并逐渐远离扩张脊的动态的地质过程,海山可能是形成蛇绿岩的一种重要环境。  相似文献   
66.
Magmatic gas scrubbing: implications for volcano monitoring   总被引:1,自引:0,他引:1  
Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915°C magmatic gas from Merapi volcano into 25°C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic–gas compositions, and a reaction of a magmatic gas–ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH<0.5 hydrothermal waters. Furthermore, it appears that scrubbing will prevent much, if any, SO2(g) degassing from long-resident boiling hydrothermal systems. Several processes can also decrease or increase H2(g) emissions during scrubbing making H2(g) a poor choice to detect changes in magma degassing.We applied the model results to interpret field observations and emission rate data from four eruptions: (1) Crater Peak on Mount Spurr (1992) where, except for a short post-eruptive period, scrubbing appears to have drastically diminished pre-, inter-, and post-eruptive SO2(g) emissions, but had much less impact on CO2(g) emissions. (2) Mount St. Helens where scrubbing of SO2(g) was important prior to and three weeks after the 18 May 1980 eruption. Scrubbing was also active during a period of unrest in the summer of 1998. (3) Mount Pinatubo where early drying out prevented SO2(g) scrubbing before the climactic 15 June 1991 eruption. (4) The ongoing eruption at Popocatépetl in an arid region of Mexico where there is little evidence of scrubbing.In most eruptive cycles, the impact of scrubbing will be greater during pre- and post-eruptive periods than during the main eruptive and intense passive degassing stages. Therefore, we recommend monitoring the following gases: CO2(g) and H2S(g) in precursory stages; CO2(g), H2S(g), SO2(g), HCl(g), and HF(g) in eruptive and intense passive degassing stages; and CO2(g) and H2S(g) again in the declining stages. CO2(g) is clearly the main candidate for early emission rate monitoring, although significant early increases in the intensity and geographic distribution of H2S(g) emissions should be taken as an important sign of volcanic unrest and a potential precursor. Owing to the difficulty of extracting SO2(g) from hydrothermal waters, the emergence of >100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways.  相似文献   
67.
The Pimpama River floodplain has developed over the last several thousand years as a result of sea-level fluctuations that shaped the lower catchment and enabled the formation of sedimentary pyrite. The subsequent production of sulfuric acid due to the oxidation of this pyrite enhances the breakdown of metal-bearing sediments and can lead to leaching of major and trace metals into the waters of the region. The seasonal pattern of rainfall and current land-use activities are important aspects that intensify the natural production of acid and influence the release and distribution of metals. To identify the source and migration of metals in the Pimpama catchment and to understand the impact of pyrite oxidation on the distribution of metals in sediments and waters, several components of the drainage system were analyzed: bedrock, sediments from river bed and bank, and water. The elements analyzed in this study (V, Cr, Co, Ni, Cu, Zn and Pb) are all present in the bedrock material which explains their occurrence in the unconsolidated sediments of the floodplain. These metals concentrate in the upper section of the sedimentary sequence and their presence is related to clay minerals such as smectite, organic matter and iron phases. However, Zn, Mo and Co occur in higher amounts than the local background and within standard shale. This comparison suggests that the diagenetic processes alone cannot explain the higher concentrations and it is concluded that these metals also have an anthropogenic source. The formation of sulfuric acid creates conditions for higher mobility of some metals, such as Cr, Co, Ni, Cu, Zn, but does not affect less mobile ones such as Mo and Pb. Over the longterm, the production of acid influences the breakdown of mineral phases and enhances the process of weathering. Over the short term, every rain event leaches acid from sediments and mobilizes metals resulting in a substantial reduction in the quality of river water. Received: 2 October 1998 · Accepted: 16 February 1999  相似文献   
68.
Cores from the Great Marsh area of the Indiana Dunes National Lakeshore were examined in order to document variations in concentration, type and size of anthropogenic organic matter (AnOM—coal, coke, etc.) and discuss their relationship to the concentration of such trace elements as Pb, Zn, and Mn in the near-surface sediment section. The results indicate that the first appearance of AnOM corresponds to the onset of industrialization in the area. There is also a general relationship between the occurrence of AnOM and Zn, Pb, and Mn. Trace metals were likely transported from the industrial sites to the area of their deposition as sulfur-bearing coatings on small anthropogenic particles. After deposition, these sulfur-bearing compounds reacted with organic matter within the marsh. As a result of bacterial reduction, the pyrite was produced, as suggested by a close relationship between the pyrite and AnOM. Distance from the industrial complex upwind as well as local hydrologic conditions are among the major factors controlling distribution of AnOM and trace elements. At the same distance from the source, types and sizes of AnOM are influenced by the duration and frequency of flooding.  相似文献   
69.
This study Investigates a tracing method using dissolved noble gases to survey the groundwater flow in a large groundwater basin. The tracing method is based on measuring the concentrations of noble gases and the ratio of helium isotopes in groundwater samples. Since it is very difficult to detect trace amounts of noble gases and helium with high accuracy in a 15-ml groundwater sample, dissolved gases were extracted and purified, then a high-resolution mass spectrometer was used for measurement and comparison with standard samples. We used this method with samples from a confined aquifer formed by the deposition of pyroclastic flow in the Kumamoto Plain on the west side of Mt. Aso in central Kyushu, Japan. The groundwater basin under the plain is divided into four small basins, based on the helium concentrations and isotope ratios, with two major groundwater flows. One flow is buried by the Aso pyroclastic flow along the old Kase River; the other is along the Tsuboi River Valley. These two groundwater flows were identified from the different helium isotope-ratios. The helium component from the deep mantle is mixed into the groundwater under the Kumamoto Plain. Finally, data on the concentrations and ratios of3He to4He in groundwater samples were used to determine the location of faults in the volcanic aquifer.  相似文献   
70.
Groundwater samples collected from both open and bore wells in an area of about 270 km2 from Madras City, India, have been analyzed for major ions (HCO3, Cl, Si, Na, Ca, and Mg) and trace elements (As, Se, B, V, Cr, Fe, Co, Pb, Cu, Zn, Cd, Mn, Ni, Mo, and Ba). The study reveals that the quality of potable water has deteriorated to a large extent. Seawater intrusion into the aquifer has been observed in nearly 50 percent of the study area. The toxic elements (As and Se) have already exceeded the maximum permissible limits of drinking water in almost the entire city. A positive correlation of As and Se with other toxic metals such as V, Cr, Fe, B, etc., indicates that all these elements are anthropogenic in origin. Applying multivariate analysis, the source for trace elements in groundwater has been grouped into two major factors: pollution and mobilization factors. The groundwater in the study area is largely contaminated by organic effluents and reflects the intensity of pollution caused by the overlying soil sediment and rapid infiltration of the pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号