首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   15篇
  国内免费   48篇
地球物理   23篇
地质学   137篇
综合类   2篇
自然地理   2篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   9篇
  2018年   9篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   19篇
  2012年   6篇
  2011年   11篇
  2010年   3篇
  2009年   5篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有164条查询结果,搜索用时 265 毫秒
81.
Major and trace element, zircon U–Pb and Hf-isotope data are reported for mafic intrusions and host granite from the Kachang pluton (North Yingjiang of SW Yunnan) in the Tengchong Terrane, in order to investigate their sources, petrogenesis and tectonic implications. The zircon U–Pb age of the mafic rocks (~55 Ma) is identical to that of the host granite (56.7 ± 0.6 Ma). The mafic rocks have high MgO concentrations (up to 13.43 wt.%) at low SiO2 contents (low to 42.73 wt.%) and slight negative to positive εHf(t) values (?2.26 to +0.59). They are enriched in LILE and LREEs and depleted in HFSEs, which can be explained as melts derived from a enriched mantle, with some crustal contamination. The host granite have high SiO2 contents (69.18–72.65 wt.%), highly negative εHf(t) values (?9.08 to ?5.14), suggesting mainly derived from an ancient crustal source. Field observations, geochronology, geochemistry and zircon Hf isotopic compositions point to a complex petrogenesis, where enriched mantle- and crust-derived magma mixing was coupled with crystal fractionation, thus explaining the genetic link between mafic and felsic magmas, result of mafic magma upwelling triggered by the subduction rollback of the Neotethyan slab. Our new data, along with the data reported (especially zircon U–Pb dating and Lu–Hf isotope data) in the Tengchong Terrane, indicate that the spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern and central Tibet.  相似文献   
82.
A provenance and stratigraphic study of the Neoproterozoic Pontas do Salso Complex (PSC), western portion of the Dom Feliciano Belt (DFB), was conducted with U–Pb zircon geochronological analysis of the metasediments and the host rocks. The U–Pb isotopic data from detrital zircon of the metasediments indicate the source from the latest Middle Tonian to Late Cryogenian (between 897 and 684 Ma) and maximum depositional age of 685 ± 18 Ma in an arc-related basin setting adjacent in the Sao Gabriel Arc. The metasediments of the PSC form an elongated body in the N35°E direction and occur in the central portion of the São Gabriel Terrane (SGT), which is constituted by ophiolitic complexes and arc-related rocks, generated probably during the final consolidation of Rodinia supercontinent, although this question is still open. Low- to medium-K calc-alkaline, metaluminous affinity, and trace-element geochemistry suggest that the chemical composition of the protoliths was generated from metasomatized mantle sources in subduction zones. The PSC is composed of meta-arkoses, with subordinate metaconglomerates and metapelites. The meta-arkoses are disposed in plane-parallel layers, which also internally feature small-scale cross-bedding structures. The matrix has a blastopsammitic, poorly selected, fine to coarse texture, and hexagonal quartz and plagioclase porphyroclasts with superimposed thermal metamorphism. The polymict metaconglomerates are matrix-supported, with 15–55% of clasts of metavolcanic rocks, metasediments, undeformed granites, and quartz veins. The metapelites comprise mainly muscovite phyllites with syn-tectonic garnet and chloritoid porphyroblasts. The PSC represents a sedimentary succession deposited on an arc-related basin formed during the collapse and uplift of the SGT.  相似文献   
83.
The southern Lhasa Terrane is famous for its huge magmatic belt which records the magmatism during Mesozoic and Cenozoic. Although the Mesozoic continental-margin setting in the southern Lhasa Terrane has been identified,details of this tectonic setting and the evolution history during the Late Cretaceous remain unclear. To further constrain these issues,we present zircon LA-ICP-MS U-Pb,Hf isotopic and geochemical data of the Gongbari dacites(of the Sangri Group) which intruded by Paleocene granodiorites from the eastern part of the southern Lhasa Terrane,Tibet. New age data indicate that the dacites were generated at ~95.4 Ma,which suggests the Sangri Group volcanism may last to Late Cretaceous. The Gongbari dacites are characterized by high Sr(428–758 ppm) contents,low concentration of heavy rare earth elements and Y(e.g. Yb=0.78–1.14 ppm; Y=8.85–11.4 ppm) with high Sr/Y(41.91–67.59) and La/Yb(22.64–30.64) ratios,similar to those of adakite. The rocks are calc-alkaline,metaluminous,enriched in LILEs,depleted in HFSEs,and have positive εHf(t) values(+7.7 to +11.6). The Gongbari dacites were probably produced by partial melting of young and hot subducted Neo-Tethyan oceanic crust under amphibolite to garnet amphibolite-facies conditions. Though the Gangdese Mountains may have formed before Indo-Asian collision,the southern margin of Lhasa Terrane might not go through obviously crustal thickening during the northward subduction of NeoTethyan oceanic lithosphere.  相似文献   
84.
Permian–Triassic fore-arc basin terranes are exposed in New Zealand, but their original positions and tectonic configurations along the eastern Gondwanan margin are not fully understood. To better constrain late Paleozoic and Mesozoic reconstructions, we investigated the provenance of Permian–Triassic marine sandstone units from the Dun Mountain-Maitai Terrane (Maitai Group) and the Kaka Point Structural Belt (Willsher Group). The recognition of abundant volcanic lithic fragments in the sandstone samples, combined with the pattern of detrital zircon ages (unimodal to bimodal 280–240 Ma age distribution), demonstrate that the upper Permian to Middle Triassic volcaniclastic successions were derived from a proximal arc source. The detrital zircon age spectra match magmatic pulses in the adjacent Tuhua Intrusives (Median Batholith), a conclusion similar to that recently proposed for the Brook Street Terrane (Grampian Formation) and Murihiku Terrane (Murihiku Supergroup). Trace-element data from the dated zircon grains provide further evidence for a Median Batholith source and cross-terrane provenance links. The data indicate that 275–230 Ma zircon grains from the Maitai Group, Willsher Group, and Murihiku Supergroup were derived from a common magmatic source, and that the late Permian Longwood Suite (261–252 Ma) in the Median Batholith was a source region for these terranes. Based on the cross-terrane provenance links, we suggest that the Brook Street and Murihiku terranes were deposited in the proximal part of a fore-arc basin, whereas the Dun Mountain-Maitai Terrane represents the distal part of the same basin. Sedimentation in the Maitai Group ceased during the Middle Triassic (∼238 Ma), likely in response to a period of orogenesis at 235–230 Ma (Gondwanide Orogeny) that is widely recognized throughout the southwest Pacific.  相似文献   
85.
《地学前缘(英文版)》2020,11(3):1053-1068
The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane (SLT) of the eastern North China Craton (NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as basalt (Group#1), basaltic andesite (Group#2), dacite (Group#3) and rhyodacite (Group#4). LA-ICP-MS zircon U–Th–Pb dating reveals that they formed at ~2.53–2.51 ​Ga. Group#1 samples are characterized by approximately flat chondrite-normalized rare earth element (REE) patterns with low (La/Yb)N ratios and a narrow range of (Hf/Sm)N ratios, and their magmatic precursors were generated by partial melting of a depleted mantle wedge weakly metasomatized by subducted slab fluids. Compared to Group#1 samples, Group#2 samples display strongly fractionated REE patterns with higher (La/Yb)N ratios and more scattered (Hf/Sm)N ratios, indicative of a depleted mantle wedge that had been intensely metasomatized by slab-derived melts and fluids. Group#3 samples are characterized by high MgO and transition trace element concentrations and fractionated REE patterns, which resemble typical high-Si adakites, and the magmatic precursors were derived from partial melting of a subducted oceanic slab. Group#4 samples have the highest SiO2 and the lowest MgO and transition trace element contents, and were derived from partial melting of basaltic rocks at lower crust levels. Integrating these tholeiitic to calc-alkaline volcanic rocks with the mass of contemporaneous dioritic-tonalitic-trondhjemitic-granodioritic gneisses, the late Neoarchean volcanic rocks in the SLT were most likely produced in an active continental margin. Furthermore, the affinities in lithological assemblages, metamorphism and tectonic regime among SLT, eastern Hebei to western Liaoning Terrane (EH–WLT), northern Liaoning to southern Jilin Terrane (NL–SJT), Anshan-Benxi continental nucleus (ABN) and Yishui complex (YSC) collectively indicate that an integral and much larger continental block had been formed in the late Neoarchean and the craton-scale lateral accretion was a dominantly geodynamic mechanism in the eastern NCC.  相似文献   
86.
甜水海地块作为西昆仑-喀喇昆仑造山带重要的组成部分,夹持于麻扎-康西瓦板块缝合带和洪山湖-乔尔天山板块缝合带之间,其构造属性的探讨对认知西昆仑地区早古生代地质演化具有重要的科学意义。笔者在甜水海地块中部麻扎地区通过野外填图新发现并厘定出一套火山岩-沉积岩组合,主要由安山岩、英安岩、流纹岩及其火山碎屑岩和少量沉积岩组成;与安山岩互层产出的英安岩和流纹岩锆石U-Pb年龄为519~513Ma,表明这套火山-沉积地层形成于中寒武世。该火山岩套的地球化学特征为:安山岩SiO2含量为57.0%~67.2%,具有高MgO(1.91%~7.17%)含量和Mg#值(39.1~65.3,平均值为55.0),较高Cr(31.0×10-6~190×10-6)和Ni(12.2×10-6~121×10-6)含量,低FeOT/MgO比值(1.12~3.26),低Al2O3(13.7%~17.3%)和K2O(1.12%~5.52%)含量的特征,属于低铁钙碱系列高镁安山岩-镁安山岩;英安岩较安山岩SiO2含量高(63.8%~71.8%),具有相似的Al2O3(13.4%~15.4%)含量,低MgO(0.28%~1.19%)含量和Mg#值(9.98~36.5,平均值为25.3),低Cr(11.5×10-6~25.2×10-6)和Ni(4.33×10-6~11.8×10-6)含量,高FeOT/MgO比值(3.64~18.9)和K2O(4.84%~9.27%)含量的特征,属于高钾钙碱性系列。安山岩和英安岩总体表现出右倾轻稀土富集分配模式,富集Rb、Ba、K、Th等大离子亲石元素,亏损Nb、Ta、Ti高场强元素,具有典型的岛弧岩浆岩特征。野外调查表明,安山岩与英安岩在空间上相邻,呈互层产出,且它们都出露于中寒武系地层中,暗示了二者在成因上紧密相联。岩石地球化学特征指示了安山岩和英安岩可能源于富集地幔楔不同比例的部分熔融作用,所产生的岩浆在上升过程中又遭受了不同比例的地壳混染。推测麻扎地区寒武纪火山岩形成于原特提斯洋向南俯冲消减机制下的岛弧构造环境,同时结合区域资料,认为在寒武纪甜水海地块存在两期岩浆作用,在早寒武系末期(~520Ma)原特提斯洋发生双向俯冲,甜水海地块北缘转化为活动大陆边缘。  相似文献   
87.
The western North China Craton (W-NCC) comprises the Alxa Terrane in the west and the Ordos Block in the east; they are separated by the Helanshan Tectonic Belt (HTB). There is an extensive debate regarding the significant Ordovician tectonic setting of the W-NCC. Most paleogeographic reconstructions emphasized the formation and rapid subsidence of an aulacogen along the HTB during the Middle–Late Ordovician, whereas paleomagnetic and geochronologic results suggested that the Alxa Terrane and the Ordos Block were independent blocks separated by the HTB. In this study, stratigraphic and geochronologic methods were used to constrain the Ordovician tectonic processes of the W-NCC. Stratigraphic correlations show that the Early Ordovician strata comprise ~500-m-thick tidal flat and lagoon carbonate successions with a progressive eastward onlap, featuring a west-deepening shallow-water carbonate shelf. In contrast, the Late Ordovician strata are composed of ~3,000-m-thick abyssal turbidites in the west and ~400-m-thick shallow-water carbonates in the east, defining an eastward-tapering basin architecture. Early Ordovician detrital zircons with ages of ~2,800–1,700 Ma were derived from the Ordos Block; the Late Ordovician turbidites were sourced from the western Alxa Terrane, based on zircon ages clustered at ~1,000–900 Ma. The petrographic modal composition and zircon age distribution imply a provenance shift from a stable craton to a recycled orogen in the Middle Ordovician. These shifts define a tectonic conversion from a passive continental margin to a foreland basin at ~467 Ma, resulting in the eastward progradation of the turbidite wedge around the HTB, the eastward backstepping of the carbonate platform in the east and the eastward expansion of orogenic thrusting in the western Alxa Terrane. This tectono-sedimentary shift coincided with the advancing subduction of the southern Paleo-Asian Ocean beneath the Alxa Terrane, generating the western Alxa continental arc and the paired retro-arc foredeep in the east under a compressional tectonic regime.  相似文献   
88.
The tectonically isolated Farnacht Formation consists of calc-alkaline dacitic-andesitic lavas of volcanic arc affinity. It is situated immediately to the south of the Clew Bay Fault Zone (western continuation of the Highland Boundary Fault Zone of Scotland) in the northeast corner of the Lower Palaeozoic South Mayo Trough in northwest Ireland. It has been metamorphosed to biotite grade greenschist facies following the development of a pervasive, c-s composite muscovite, quartz, and feldspar schistosity. The Farnacht Formation may comprise a terrane that is directly unrelated to nearby Ordovician and Silurian rocks; its present position was fixed largely by Wenlock times. The age of the Farnacht Formation and the deformational event(s) that produced the schistosity are not known. 40Ar/39 Ar step heating from four specimens have dated the crystallization of biotite at from 422 ± 2 to 405 ± 14 Ma with a mean age of 413 Ma. These ages date either the post-D2, pre-D3 metamorphic peak, or a hornfelsing of the same structural age related to an unseen thermal source, and provide a minimum age for the end Silurian - early Devonian Caledonian tectonothermal activity in the northeast part of the South Mayo Trough.  相似文献   
89.
Abstract We report new field, petrological and isotopic data and interpretations from one of New Zealand’s major basement geological boundaries, the contact between the east side of the Median Batholith (formerly Median Tectonic Zone) and the allochthonous Mesozoic terranes of the Eastern Province. In the Nelson and Hollyford–Eglinton areas this contact is a Cenozoic fault, the Median Tectonic Line of earlier workers. However, in the Longwood Range, unfaulted pre-Cenozoic geological relations are preserved intact. Our new Ar–Ar, U–Pb and isotopic data show that the Median Batholith in the Longwood Range consists of two suites. (i) Eastern, isotopically primitive (87Sr/86Sri = 0.702 to 0.703; ?NdT = + 7 to + 8) trondhjemite and gabbroic rocks of Permian age that we believe are part of the intraoceanic Brook Street arc of the Eastern Province. (ii) Western, isotopically more evolved (87Sr/86Sri = 0.703 to 0.704; ?NdT = + 3 to + 5) quartz diorites, quartz monzodiorites and rare granites of Middle Triassic to Early Jurassic age that we correlate with a pulse of magmatism elsewhere in the Median Batholith. Field observations in the Longwood Range indicate intrusive, not faulted, contacts between these units and constrain accretion of the Brook Street Terrane to Gondwana to have occurred 230–245 Ma. Intra-batholith shear zones (T ~ 600°C and P ~ 0.2–0.3 GPa) were active at approximately 220 Ma. Modelling of K-feldspar Ar incremental heating ages indicate that most of the Longwood Range had cooled below 175°C by the Middle Jurassic and experienced no subsequent reheating. Significant additional post-accretionary Early Cretaceous and Cenozoic thermotectonic activity in Median Batholith in the Hollyford-Eglinton area is indicated by a new 140 ± 2 Ma U-Pb zircon date on a Largs ignimbrite, as well as by Cenozoic K-feldspar Ar–Ar ages in the Middle Triassic Mistake Diorite.  相似文献   
90.
I.McDermid    J.C.Aitchison    Badengzhu    A.M.Davis    Liu Jianbing    Luo Hui    Wu Hiyun    S.V.Ziabrev  WT  ”BX 《地学前缘》2000,(Z1)
ZEDONG TERRANE, A MID CRETACEOUS INTRA-OCEANIC ARC, SOUTH TIBET  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号