首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   807篇
  免费   183篇
  国内免费   68篇
测绘学   103篇
大气科学   105篇
地球物理   464篇
地质学   148篇
海洋学   62篇
天文学   92篇
综合类   20篇
自然地理   64篇
  2023年   4篇
  2022年   20篇
  2021年   10篇
  2020年   40篇
  2019年   35篇
  2018年   24篇
  2017年   30篇
  2016年   34篇
  2015年   37篇
  2014年   49篇
  2013年   47篇
  2012年   28篇
  2011年   58篇
  2010年   39篇
  2009年   53篇
  2008年   75篇
  2007年   50篇
  2006年   53篇
  2005年   28篇
  2004年   30篇
  2003年   29篇
  2002年   26篇
  2001年   26篇
  2000年   31篇
  1999年   28篇
  1998年   31篇
  1997年   16篇
  1996年   22篇
  1995年   28篇
  1994年   18篇
  1993年   20篇
  1992年   8篇
  1991年   8篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1058条查询结果,搜索用时 15 毫秒
991.
Fully coupled mathematical modeling of turbidity currents over erodible bed   总被引:1,自引:0,他引:1  
Turbidity currents may feature active sediment transport and rapid bed deformation, such as those responsible for the erosion of many submarine canyons. Yet previous mathematical models are built upon simplified governing equations and involve steady flow and weak sediment transport assumptions, which are not in complete accordance with rigorous conservation laws. It so far remains unknown if these could have considerable impacts on the evolution of turbidity currents. Here a fully coupled modeling study is presented to gain new insights into the evolution of turbidity currents. The recent analysis of the multiple time scales of subaerial sediment-laden flows over erodible bed [Cao Z, Li Y, Yue Z. Multiple time scales of alluvial rivers carrying suspended sediment and their implications for mathematical modeling. Adv Water Resour 2007;30(4):715–29] is extended to subaqueous turbidity currents to complement the fully coupled modeling. Results from numerical simulations show the ability of the present coupled model to reproduce self-accelerating turbidity currents. Comparison among the fully and partially coupled and decoupled models along with the analysis of the relative time scale of bed deformation explicitly demonstrate that fully coupled modeling is essential for refined resolution of those turbidity currents featuring active sediment transport and rapid bed deformation, and existing models based on simplified conservation laws need to be reformulated.  相似文献   
992.
Soil CO2 concentration data were collected periodically from July 2001 to June 2005 from sampling site grids in two areas located on the lower flanks of Mt. Etna volcano (Paternò and Zafferana Etnea–Santa Venerina). Cluster analysis was performed on the acquired data in order to identify possible groups of sites where soil degassing could be fed by different sources. In both areas three clusters were recognised, whose average CO2 concentration values throughout the whole study period remained significantly different from one another. The clusters with the lowest CO2 concentrations showed time-averaged values ranging from 980 to 1,170 ppm vol, whereas those with intermediate CO2 concentrations showed time-averaged values ranging from 1,400 to 2,320 ppm vol, and those with the highest concentrations showed time-averaged values between 1,960 and 55,430 ppm vol. We attribute the lowest CO2 concentrations largely to a biogenic source of CO2. Conversely, the highest CO2 concentrations are attributed to a magmatic source, whereas the intermediate values are due to a variable mixing of the two sources described above. The spatial distribution of the CO2 values related to the magmatic source define a clear direction of anomalous degassing in the Zafferana Etnea–Santa Venerina area, which we attribute to the presence of a hidden fault, whereas in the Paternò area no such oriented anomalies were observed, probably because of the lower permeability of local soil. Time-series analysis shows that most of the variations observed in the soil CO2 data from both areas were related to changes in the volcanic activity of Mt. Etna. Seasonal influences were only observed in the time patterns of the clusters characterised by low CO2 concentrations, and no significant interdependence was found between soil CO2 concentrations and meteorological parameters. The largest observed temporal anomalies are interpreted as release of CO2 from magma batches that migrated from deeper to shallower portions of Etna’s feeder system. The pattern of occurrence of such episodes of anomalous gas release during the observation period was quite different between the two studied areas. This pattern highlighted an evident change in the mechanism of magma transport and storage within the volcano’s feeder system after June 2003, interpreted as magma accumulation into a shallow (<8 km depth) reservoir.  相似文献   
993.
The German Wadden Sea (southern North Sea) sediments are composed of both cohesive and non-cohesive deposits. The spatial distribution patterns are mainly driven by wind-induced waves and tidal currents. Transport intensity and duration depend on the hydrodynamic conditions, which vary over time. In this paper, the transport of suspended sediment was investigated on seasonal, tidal and hourly time scales in the back-barrier system of Spiekeroog Island. Long- and short-term data of fair weather periods and two storm events were investigated based on stationary and mobile measurements of currents and waves by Acoustic Doppler Current Profiler (ADCP), in situ particle size and suspended sediment concentration (SSC) measurements by laser in situ scattering and transmissometry (LISST) as well as wind records. The ADCP backscatter intensities were calibrated by means of LISST volume concentration data in order to quantify longer term SSCs and fluxes in the back-barrier system. Values up to 120 mg l−1 were recorded, but concentrations more commonly were below 60 mg l−1. The long-term results confirm former observations of a balanced budget during low-energy (fair weather) conditions in the study area. In general, SSCs were higher during spring tides than during neap tides. The data also clearly show the remobilisation of sediment by tidal current entrainment. The records include two severe storm events, “Britta” (1st November 2006) and “Kyrill” (18th January 2007). The data reveal very complex temporal flow and transport patterns. During both storm events, the export of material was mainly controlled by the interaction of wind, waves and tidal phase. The typical ebb-dominance occurring during fair-weather conditions was temporarily neutralised and even reversed to a flood-dominated situation. During “Kyrill”, the wind and high-waves setup in conjunction with the tidal phase was even able to compress the duration of two successive ebb cycles by over 70%. Although SSCs increased during both storms and higher turbulence lifted particle clouds upwards, an export of suspended matter towards the North Sea was only observed under the conditions taking place during “Britta”. Such fluxes, however, are currently still difficult to quantify because the backscatter intensity during high energy events includes a substantial amount of noise produced by the high turbulence, especially near the water surface.  相似文献   
994.
By applying multitaper methods and Pearson test on the surface air temperature and flare index used as a proxy data for possible solar sources of climate-forcing, we investigated the signature of these variables on middle and high latitudes of the Atlantic–Eurasian region (Turkey, Finland, Romania, Ukraine, Cyprus, Israel, Lithuania, and European part of Russia). We considered the temperature and flare index data for the period ranging from January 1975 to the end of December 2005, which covers almost three solar cycles, 21st, 22nd, and 23rd.We found significant correlations between solar activity and surface air temperature over the 50–60° and 60–70° zones for cycle 22, and for cycle 23, over the 30–40°, 40–50°, and 50–60° zones.The most pronounced power peaks for surface air temperature found by multitaper method are around 1.2, 1.7, and 2.5 years which were reported earlier for some solar activity indicators. These results support the suggestion that there is signature of solar activity effect on surface air temperature of mid-latitudes.  相似文献   
995.
My argument in this article, will be that nature, in general, and human nature in particular, suggests that, in principle, it is possible to derive the causal time arrow from several physical time arrows existing in nature and appearing to be unidirectional and irreversible phenomena. A more concrete argument will be that the assumption of a causal time arrow to which geologists resort in all geo-historical explanations, apparently originates in geo-historical time arrows concealed in unidirectional and irreversible physical-geological processes. I will illustrate this claim with a few examples of geo-historical explanations in the theory of plate tectonics, most of which are based on irreversible geo-physical processes. My final argument is a broader, of an epistemological nature, according to which the causal time arrow assumption used in logical-causative explanations in everyday life and in science, apparently “derives” in a way from the geo-historical time arrow. I will base this argument on the causal relationship and mutual influence that occurs in nature between geo-historical and evolutionary processes in animals, including developmental processes of the human brain and mind. From this reductionist argument, nicely integrated in the framework of evolutionary epistemology (EEM), it is possible to derive a wider naturalistic argument according to which, on principle, the laws of geo-historical physics can be reduced to the laws of logic and causality.  相似文献   
996.
The Normalized Difference Vegetation Index (NDVI), as a key indicator of vegetation growth, effectively provides information regarding vegetation growth status. Based on the Global Inventory Monitoring and Modeling System (GIMMS) NDVI time series data for Kazakhstan from 1982 to 2015, we analyzed the spatial pattern and changes in the vegetation growth trend. Results indicated that the three main types of vegetation in Kazakhstan are cropland, grassland and shrubland, and these are distributed from north to south. While the regional distribution pattern is obvious, the vegetation index decreased from north to south. The average NDVI values of the three main vegetation types are in the order of cropland > grassland > shrubland. During the period from 1982 to 2015, the NDVI initially increased (1982-1992), then decreased (1993-2007), and then increased again (2008-2015). The areas where NDVI decreased significantly accounted for 24.0% of the total land area. These areas with vegetation degradation are mainly distributed in the northwest junction between cropland and grassland, and in the cropland along the southern border. The proportions of total grassland, cropland and shrubland areas that were degraded are 23.5%, 48.4% and 13.7%, respectively. Areas with improved vegetation, accounting for 11.8% of the total land area, were mainly distributed in the mid-east cropland area, and the junction between cropland and grassland in the mid-east region.  相似文献   
997.
The 2003 Tokachi-oki earthquake ruptured a large area of approximately 100 km2. The location of the largest asperity was estimated to be several dozen kilometres offshore of Hokkaido, Japan. The magnitude measured 8.0 on the Japan Meteorological Agency scale, and several studies used waveform inversion analysis to estimate the moment-magnitude as M w 8.0–8.2. Several studies reported that there was a minor asperity at the northeastern edge of the fault plane, and that the rupture velocity towards the minor asperity was less than that towards the main asperity. One of them illustrated that the location and timing of the minor asperity were poorly constrained. In this paper, we introduce a procedure based on semblance analysis to image the location of the minor northeastern asperity with improved resolution. We group 15 strong-motion seismographs into three arrays, and we perform semblance analysis on impulsive waves that were possibly generated from the minor asperity and were conspicuously observed at stations in eastern Hokkaido. By projecting the semblance values onto the fault plane, we estimate the location of the minor asperity. We find it to be shallower and farther from the coast than the previous results indicated. The average rupture velocity towards the asperity is estimated to be 2.5 km s−1, which is slower than the 3.6 km s−1 obtained by waveform inversion analysis.  相似文献   
998.
999.
We address the problem of estimating the spherical-harmonic power spectrum of a statistically isotropic scalar signal from noise-contaminated data on a region of the unit sphere. Three different methods of spectral estimation are considered: (i) the spherical analogue of the one-dimensional (1-D) periodogram, (ii) the maximum-likelihood method and (iii) a spherical analogue of the 1-D multitaper method. The periodogram exhibits strong spectral leakage, especially for small regions of area   A ≪ 4π  , and is generally unsuitable for spherical spectral analysis applications, just as it is in 1-D. The maximum-likelihood method is particularly useful in the case of nearly-whole-sphere coverage,   A ≈ 4π  , and has been widely used in cosmology to estimate the spectrum of the cosmic microwave background radiation from spacecraft observations. The spherical multitaper method affords easy control over the fundamental trade-off between spectral resolution and variance, and is easily implemented regardless of the region size, requiring neither non-linear iteration nor large-scale matrix inversion. As a result, the method is ideally suited for most applications in geophysics, geodesy or planetary science, where the objective is to obtain a spatially localized estimate of the spectrum of a signal from noisy data within a pre-selected and typically small region.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号