首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1319篇
  免费   318篇
  国内免费   790篇
测绘学   8篇
大气科学   62篇
地球物理   264篇
地质学   1841篇
海洋学   2篇
综合类   62篇
自然地理   188篇
  2024年   13篇
  2023年   34篇
  2022年   43篇
  2021年   51篇
  2020年   64篇
  2019年   93篇
  2018年   84篇
  2017年   70篇
  2016年   81篇
  2015年   88篇
  2014年   112篇
  2013年   108篇
  2012年   142篇
  2011年   101篇
  2010年   77篇
  2009年   114篇
  2008年   102篇
  2007年   130篇
  2006年   158篇
  2005年   106篇
  2004年   101篇
  2003年   79篇
  2002年   85篇
  2001年   64篇
  2000年   50篇
  1999年   48篇
  1998年   54篇
  1997年   41篇
  1996年   31篇
  1995年   33篇
  1994年   16篇
  1993年   20篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1987年   2篇
  1983年   1篇
  1979年   4篇
  1954年   1篇
排序方式: 共有2427条查询结果,搜索用时 906 毫秒
151.
东天山秋黄韧性剪切带位于新疆东部两大板块碰撞接合地带,东西延长逾600km,由石炭系组成,规模巨大,分带明显,宏微观变形标志清晰,石英C轴组构呈点极密型,分为四期变形,序列演化明显,应变测量属平面单剪,剪切位移量达75km以上,存在脆韧性变形转换,变形时代为海西中晚期,强弱应变相间排列的标度不变性特征明显,变形机制属地壳中深层次塑性流变和韧性剪切,与板块间的俯冲碰撞构造演化密切相关。控制着金铜矿分布。  相似文献   
152.
通过降水,土壤水分,天然草场产草量之间建立的统计关系,来说明水分供应是影响牧草产量的重要因素,并依据降水和土壤水分与牧草产草量的关系划分出牧草生长中水分供给的正常,干旱等指标。  相似文献   
153.
天山上地幔结构及其对壳内构造运动的作用   总被引:17,自引:0,他引:17       下载免费PDF全文
胥颐  刘福田 《地震地质》1998,20(4):118-412
以深部地球物理资料为基础,介绍了天山地震带上地幔的基本结构,讨论了天山不同地区上地幔介质的动力学性质和可能的驱动机制。认为水平挤压形变是造成西天山和天山毗邻西昆仑附近区域上地幔岩石圈缩短和增厚的主要原因;而在中天山和东天山靠近准噶尔盆地南缘一带,除了板块运动造成的水平挤压力之外,上地幔热物质有可能上浮甚至侵入到地壳之中。它们与水平运动一样,对壳内脆性介质的构造活动起到非常重要的作用,特别是地壳底部莫霍面附近的低速滑脱层成为震源区深部构造的一个明显标志。此外,自从印度 亚洲大陆碰撞以来,天山部分地区固结冷却的山根有可能在多重挤压变形和小尺度热对流的共同作用下,脱离它们的原有的层位而沉入上地幔  相似文献   
154.
天山第四纪冰川擦痕特征及分布规律   总被引:1,自引:0,他引:1  
根据冰蚀痕迹的统计数据 ,着重讨论了天山高山地区冰岩界面形成过程和冰川擦痕分布规律。典型的冰碛岩一般有擦面和擦痕。冰川槽谷的横剖面上 ,从侧部向中部 ,擦痕密度逐渐增大 ,槽谷的谷壁向谷底的转折处是擦痕密度由小转大的突变点 (拐点 ) ,反映了磨蚀作用不断增强。而冰坎的擦痕密度则呈现较大的波动。冰坎迎冰面的粗大擦痕密度远比槽谷中的擦痕密度大。羊背石从顶部到侧部 ,擦痕密度由大变小  相似文献   
155.
南天山造山带中段推覆体内部变形及其与逆冲构造的关系   总被引:3,自引:0,他引:3  
南天山造山带是古生代期间塔里木板块与伊犁—伊塞克湖板块对接、碰撞的产物 ,主体由向南逆冲的推覆体组成。推覆体内部变形构造在垂直于主断面方向上呈规律性变化。从推覆体底部向上 ,褶皱从 A型褶皱 ,紧闭、等斜的 B型褶皱 ,前翼褶皱经斜歪、倒转褶皱渐变为对称的尖棱或箱状 B型褶皱 ;构造面理从发育主断面近平行的 S-面理及剪切滑移的 C-面理渐变为只发育与主断面近垂直的 D-面理。据此 ,可把推覆体自下而上划分成为递进剪切、过渡和等轴挤压三个变形域。变形过程分析表明 ,存在水平挤压变形和随后的简单剪切变形两个变形阶段 ,前者发育于主断裂面形成之前 ,后者发育于主断裂面形成之后。这指示南天山造山带以变形扩展速率高于断裂扩展速率为特征  相似文献   
156.
Based on study of Nd isotopic composition for 101 rocks of various types from Tianshan Orogen, the age and character of basement and continental crustal evolution of the Tianshan Orogen were proposed. It is deduced that the continental crustal basement of the Tianshan Orogen was formed 1. 8 Ga ago. The protolith of its metamorphic rocks was derived from long-term depleted mantle source in the ancient are tectonic setting probably. The Tianshan Orogen is obviously different from the North Tarim Block in age of basement and post-evolution history. It was also shown that Paleozoic continental crustal growth happened extensively in the Tianshan Orogen, which is distinguished from Yangtse Block and Cathaysia Block in eastern China. Project supported by the National Natural Science Foundation of China (Grant No. 49633250). It belongs to the National “305” Project in Xinjiang, which is one of the National Key Projects in the Ninth Five-Year Plan (96-915-07-05A).  相似文献   
157.
东天山大型韧性剪切带基本特征与金矿预测   总被引:28,自引:3,他引:25  
东天山大型韧性剪切带即秋格明塔什-黄山韧性剪切带,规模宏大,东西长逾600km,宽5~20km。变形标志明显,分四期变形。应变测量、岩组分析、剪切位移量计算、同位素测年等定量分析表明:①以平面单剪应变为主,稍晚向伸长应变转化;②存在逆冲剪切和脆-韧性变形转换;③剪切位移量在75km以上;④变形时代在300~250Ma之间,高峰期在285~265Ma,属海西中晚期。它是康-黄断裂带的重要组成体,控制着康古尔塔格金矿带的空间展布。据现有大中型金矿研究建立了区域脆-韧性变形转换带结构模式和金矿预测模式,可有效指导找矿勘探。  相似文献   
158.
Tianshan is one of the longest and most active intracontinental orogenic belts in the world. Due to the collision between Indian and Eurasian plates since Cenozoic, the Tianshan has been suffering from intense compression, shortening and uplifting. With the continuous extension of deformation to the foreland direction, a series of active reverse fault fold belts have been formed. The Xihu anticline is the fourth row of active fold reverse fault zone on the leading edge of the north Tianshan foreland basin. For the north Tianshan Mountains, predecessors have carried out a lot of research on the activity of the second and third rows of the active fold-reverse faults, and achieved fruitful results. But there is no systematic study on the Quaternary activities of the Xihu anticline zone. How is the structural belt distributed in space?What are the geometric and kinematic characteristics?What are the fold types and growth mechanism?How does the deformation amount and characteristics of anticline change?In view of these problems, we chose Xihu anticline as the research object. Through the analysis of surface geology, topography and geomorphology and the interpretation of seismic reflection profile across the anticline, we studied the geometry, kinematic characteristics, fold type and growth mechanism of the structural belt, and calculated the shortening, uplift and interlayer strain of the anticline by area depth strain analysis.
In this paper, by interpreting the five seismic reflection profiles across the anticline belt, and combining the characteristics of surface geology and geomorphology, we studied the types, growth mechanism, geometry and kinematics characteristics, and deformation amount of the fold. The deformation length of Xihu anticline is more than 47km from west to east, in which the hidden length is more than 14km. The maximum deformation width of the exposed area is 8.5km. The Xihu anticline is characterized by small surface deformation, simple structural style and symmetrical occurrence. The interpretation of seismic reflection profile shows that the deep structural style of the anticline is relatively complex. In addition to the continuous development of a series of secondary faults in the interior of Xihu anticline, an anticline with small deformation amplitude(Xihubei anticline)is continuously developed in the north of Xihu anticline. The terrain high point of Xihu anticline is located about 12km west of Kuitun River. The deformation amplitude decreases rapidly to the east and decreases slowly to the west, which is consistent with the interpretation results of seismic reflection profile and the calculation results of shortening. The Xihu anticline is a detachment fold with the growth type of limb rotation. The deformation of Xihu anticline is calculated by area depth strain analysis method. The shortening of five seismic reflection sections A, B, C, D and E is(650±70) m, (1 070±70) m, (780±50) m, (200±40) m and(130±30) m, respectively. The shortening amount is the largest near the seismic reflection profile B of the anticline, and decreases gradually along the strike to the east and west ends of the anticline, with a more rapidly decrease to the east, which indicates that the topographic high point is also a structural high point. The excess area caused by the inflow of external material or outflow of internal matter is between -0.34km2 to 0.56km2. The average shortening of the Xihubei anticline is between(60±10) m and(130±40) m, and the excess area caused by the inflow of external material is between 0.50km2 and 0.74km2. The initial locations of the growth strata at the east part is about 1.9~2.0km underground, and the initial location of the growth strata at the west part is about 3.7km underground. We can see the strata overlying the Xihu anticline at 3.3km under ground, the strata above are basically not deformed, indicating that this section of the anticline is no longer active.  相似文献   
159.
A combined study of zircon morphology, U–Pb ages and Hf isotopes as well as whole‐rock major and trace elements was carried out for ultrahigh‐pressure (UHP) eclogite and felsic gneiss from the main hole (MH) of the Chinese Continental Scientific Drilling (CCSD) project in the Sulu orogen. The results show contrasting Hf isotope compositions for bimodal UHP metaigneous rocks, pointing to contrasting origins for their protoliths (thus dual‐bimodal compositions). The samples of interest were from two continuous core segments from CCSD MH at depths of 734.21–737.16 m (I) and 929.67–932.86 m (II) respectively. Zircon U–Pb dating for four samples from the two core segments yields two groups of ages at 784 ± 17 and 222 ± 3 Ma, respectively, corresponding to protolith formation during supercontinental rifting and metamorphic growth during continental collision. Although the Triassic UHP metamorphism significantly reset the zircon U–Pb system of UHP rocks, the Hf isotope compositions of igneous zircon can be used to trace their protolith origin. Contrasting types of initial Hf isotope ratios are, respectively, correlated with segments I and II, regardless of their lithochemistry. The first type shows positive ?Hf(t) values of 7.8 ± 3.1 to 6.0 ± 3.0, with young Hf model age of 1.03 and 1.11 Ga. The second type exhibits negative ?Hf(t) values of ?6.9 ± 1.6 to ?9.1 ± 1.1, with old Hf model ages of 2.11 and 2.25 Ga. It appears that the UHP rocks from the two segments have protoliths of contrasting origin. Consistent results are also obtained from their trace element compositions suggesting that mid‐Neoproterozoic protoliths of bimodal UHP metaigneous rocks formed during supercontinental rifting at the northern margin of the South China Block. Thus, the first type of bimodal magmatism formed by rapid reworking of juvenile crust, whereas the second type of bimodal magmatism was principally generated by rift anatexis of Paleoproterozoic crust. Melting of orogenic lithosphere has potential to bring about bimodal magmatism with contrasting origins. Because arc–continent collision zones are the best place to accumulate both juvenile and ancient crusts, the contrasting types of bimodal magmatism are proposed to occur in an arc–continent collision orogen during the supercontinental rifting, in response to the attempted breakup of the supercontinent Rodinia at c. 780 Ma.  相似文献   
160.
Chloritoid–glaucophane‐bearing rocks are widespread in the high‐pressure belt of the north Qilian orogen, NW China. They are interbedded and cofacial with felsic schists originated from greywackes, mafic garnet blueschists and low‐T eclogites. Two representative chloritoid–glaucophane‐bearing assemblages are chloritoid + glaucophane + garnet + talc + quartz (sample Q5‐49) and chloritoid + glaucophane + garnet + phengite + epidote + quartz (sample Q5‐12). Garnet in sample Q5‐49 is coarse‐, medium‐ and fine‐grained and shows two types of zonation patterns. In pattern I, Xgrs is constant as Xpy rises, and in pattern II Xgrs decreases as Xpy rises. Phase equilibrium modelling in the NC(K)MnFMASH system with Thermocalc 3.25 indicates that pattern I can be formed during progressive metamorphism in lawsonite‐stable assemblages, while pattern II zonation can be formed with further heating after lawsonite has been consumed. Garnet growth in Q5‐49 is consistent with a continuous progressive metamorphic process from ~14.5 kbar at 470 °C to ~22.5 kbar at 560 °C. Garnet in sample Q5‐12 develops with pattern I zonation, which is consistent with a progressive metamorphic process from ~21 kbar at 540 °C to ~23.5 kbar at 580 °C with lawsonite present in the whole garnet growth. The latter sample shows the highest PT conditions of the reported chloritoid–glaucophane‐bearing assemblages. Phase equilibrium calculation in the NCKFMASH system with a recent mixing model of amphibole indicates that chloritoid + glaucophane paragenesis does not have a low‐pressure limit of 18–19 kbar as previously suggested, but has a much larger pressure range from 7–8 to 27–30 kbar, with the low‐pressure part being within the stability field of albite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号