首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   19篇
  国内免费   7篇
大气科学   4篇
地球物理   23篇
地质学   30篇
海洋学   2篇
天文学   4篇
综合类   2篇
自然地理   12篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   5篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1976年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
41.
盐类溶解动力学的数学模型和热力学函数   总被引:5,自引:0,他引:5       下载免费PDF全文
总结了研究盐类溶解动力学的方法和数学模型。采用C语言编写了自动寻优的单线形法,实现了含4个参数的通用程序,并例举了研究实例。另外讨论了热力学函数的处理,也例举了研究实例。  相似文献   
42.
Wadeite K2ZrSi3O9 and its analogues K2TiSi3O9 and Cs2ZrSi3O9, synthesized by high-temperature solid-state sintering, have been investigated using powder X-ray diffraction coupled with Rietveld analysis and high-temperature oxide melt solution calorimetry. The crystal chemistry and energetics of these phases, together with K2SiVISi3 IVO9, a high-pressure wadeite analogue containing both tetrahedral and octahedral Si, are discussed in term of ionic substitutions. As the size of the octahedral framework cation increases, Si4+ → Ti4+ → Zr4+, the cell parameter c increases at a much higher rate than a. In contrast, increasing the interstitial alkali cation size (K+ → Cs+) results in a higher rate of increase in a compared with c. This behavior can be attributed to framework distortion around the interstitial cation. The enthalpies of formation from the constituent oxides (ΔHf,ox0) and from the elements (ΔHf,el0) have been determined from drop-solution calorimetry into 2PbO·B2O3 solvent at 975 K. The obtained values (in kJ/mol) are as follows: ΔHf,ox0 (K2TiSi3O9) = −355.8 ± 3.0, ΔHf,el0 (K2TiSi3O9) = −4395.1 ± 4.8, ΔHf,ox0 (K2ZrSi3O9) = −374.3 ± 3.3, ΔHf,el0 (K2ZrSi3O9) = −4569.9 ± 5.0, ΔHf,ox0 (Cs2ZrSi3O9) = −396.6 ± 4.4, and ΔHf,el0 (Cs2ZrSi3O9) = −4575.0 ± 5.5. The enthalpies of formation for K2SiVISi3 IVO9 were calculated from its drop-solution enthalpy of an earlier study (Akaogi et al. 2004), and the obtained ΔHf,ox0 (K2SiSi3O9) = −319.7 ± 3.4 and ΔHf,el0 (K2SiSi3O9) = −4288.7 ± 5.1 kJ/mol. With increasing the size of the octahedral framework cation or of the interstitial alkali cation, the formation enthalpies become more exothermic. This trend is consistent with the general behavior of increasing energetic stability with decreasing ionic potential (z/r) seen in many oxide and silicate systems. Further, increasing the size of the octahedral framework cation appears to induce more rapid increase in stability than increasing the interstitial alkali cation size, suggesting that framework cations play a more dominant role in wadeite stability.  相似文献   
43.
We consider the thermodynamic and fluid dynamic processes that occur during subglacial effusive eruptions. Subglacial eruptions typically generate catastrophic floods (jökulhlaups) due to melting of ice by lava and generation of a large water cavity. We consider the heat transfer from basaltic and rhyolitic lava eruptions to the ice for typical ranges of magma discharge and geometry of subglacial lavas in Iceland. Our analysis shows that the heat flux out of cooling lava is large enough to sustain vigorous natural convection in the surrounding meltwater. In subglacial eruptions the temperature difference driving convection is in the range 10–100??°C. Average temperature of the meltwater must exceed 4??°C and is usually substantially greater. We calculate melting rates of the walls of the ice cavity in the range 1–40?m/day, indicating that large subglacial lakes can form rapidly as observed in the 1918 eruption of Katla and the 1996 eruption of Gjálp fissure in Vatnajökull. The volume changes associated with subglacial eruptions can cause large pressure changes in the developing ice cavity. These pressure changes can be much larger than those associated with variation of bedrock and glacier surface topography. Previous models of water-cavity stability based on hydrostatic and equilibrium conditions may not be applicable to water cavities produced rapidly in volcanic eruptions. Energy released by cooling of basaltic lava at the temperature of 1200??°C results in a volume deficiency due to volume difference between ice and water, provided that heat exchange efficiency is greater than approximately 80%. A negative pressure change inhibits escape of water, allowing large cavities to build up. Rhyolitic eruptions and basaltic eruptions, with less than approximately 80% heat exchange efficiency, cause positive pressure changes promoting continual escape of meltwater. The pressure changes in the water cavity can cause surface deformation of the ice. Laboratory experiments were carried out to investigate the development of a water cavity by melting ice from a finite source area at its base. The results confirm that the water cavity develops by convective heat transfer.  相似文献   
44.
Hydrous pyrolysis in flexible gold-bag autoclaves was used to study the production of carboxylic acids and light hydrocarbons from two marine type IIb source rocks (New Albany and Phosphoria Shales). Kerogen pyrolysis produced significant amounts of the monocarboxylic acids (acetic > propionic > butyric). The gases were dominated by CO2 and methane, in that order, and progressively smaller amounts of the alkanes (ethane > propane > butane > pentane). Kinetic analyses of production rates for the New Albany Shale suggest mean activation energies (E) of 51-54 kcal/mol for both the light hydrocarbons and acids. Pressure had little effect on measured production rates for either shale over the pressure range investigated. Chemical thermodynamic speciation modeling suggests that in these experiments metal-organic acid anion complexation had little impact on aluminum speciation/solubility, but was important with respect to the alkaline earths.  相似文献   
45.
46.
Pore waters of natural clays, which are investigated as potential host rock formations for high-level nuclear waste, are known to contain large amounts of low-molecular weight organic compounds. These small organic ligands might impact the aqueous geochemistry of the stored radionuclides and, thus, their migration behavior. In the present work, the complexation of Cm(III) with formate in aqueous NaCl solution is investigated by time-resolved laser fluorescence spectroscopy (TRLFS) as a function of the ionic strength (0.5–3.0 mol/kg), the ligand concentration (0–0.2 mol/kg) and the temperature (20–90 °C). The Cm(III) speciation is determined by deconvolution of the emission spectra. The obtained distribution of Cm(III) species is used to calculate the conditional stability constants (log K′(T)) at a given temperature and ionic strength which are extrapolated to zero ionic strength by using the specific ion interaction theory (SIT). Thus, the thermodynamic log K0n(T) values for the formation of [Cm(Form)n](3−n)+ (n = 1, 2) and the ion interaction coefficients (ε(i,k)) for [Cm(Form)n](3−n)+ (n = 1, 2) with Cl are obtained. The log K01(T) (2.11 (20 °C)–2.49 (90 °C)) and log K02(T) values (1.17 (30 °C–2.01 (90 °C)) increase continuously with increasing temperature. The log K0n(T) values are used to derive the standard reaction enthalpies and entropies (ΔrH0m, ΔrS0m) of the respective complexation reactions according to the Van’t Hoff equation. In all cases, positive ΔrH0m and ΔrS0m values are obtained. Thus, both complexation steps are endothermic and entropy-driven.  相似文献   
47.
Analysis of existing data and models on point defects in pure (Fe,Mg)-olivine (Phys Chem Miner 10:27–37,1983; Phys Chem Miner 29:680–694, 2002) shows that it is necessary to consider thermodynamic non-ideality of mixing to adequately describe the concentration of point defects over the range of measurement. In spite of different sources of uncertainties, the concentrations of vacancies in octahedral sites in (Fe,Mg)-olivine are on the order of 10−4 per atomic formula unit at 1,000–1,200 °C according to both the studies. We provide the first explicit plots of vacancy concentrations in olivine as a function of temperature and oxygen fugacity according to the two models. It is found that in contrast to absolute concentrations at ∼1,100 °C and dependence on fO2, there is considerable uncertainty in our knowledge of temperature dependence of vacancy concentrations. This needs to be considered in discussing the transport properties such as diffusion coefficients. Moreover, these defect models in pure (Fe,Mg)-olivine need to be extended by considering aliovalent impurities such as Al, Cr to describe the behavior of natural olivine. We have developed such a formulation, and used it to analyze the considerable database of diffusion coefficients in olivine from Dohmen et al. (Phys Chem Miner this volume, 2007) (Part - I) and older data in the literature. The analysis documents unequivocally for the first time a change of diffusion mechanism in a silicate mineral—from the transition metal extrinsic (TaMED) to the purely extrinsic (PED) domain, at fO2 below 10−10  Pa, and consequently, temperatures below 900 °C. The change of diffusion mechanism manifests itself in a change in fO2 dependence of diffusivity and a slight change in activation energy of diffusion—the activation energy increases at lower temperatures. These are consistent with the predictions of Chakraborty (J Geophys Res 102(B6):12317–12331, 1997). Defect formation enthalpies in the TaMED regime (distinct from intrinsic defect formation) lie between −66 and + 15 kJ/mol and migration energies of octahedral cations in olivine are most likely ∼ 260 kJ/mol, consistent with previous inferences (Phys Chem 207:147–162, 1998). Plots are shown for diffusion at various constant fO2 as well as along fO2 buffers, to highlight the difference in behavior between the two. Considering all the diffusion data and constraints from the point defect models, (Fe–Mg) diffusion in olivine along [001] is best described by the Master equations: (1) At oxygen fugacities greater than 10−10 Pa:
where T is in Kelvin, P and fO2 is in Pascals, X Fe is the mole fraction of the fayalite component and R is the gas constant in J/mol/K. (2) At oxygen fugacities less than 10−10  Pa:
These equations reproduce all of the 113 experimental data points within half an order of magnitude. (3) Alternately, a global equation averaging out the change of mechanism may be used, with somewhat larger errors in reproducing the measured diffusion data. It underestimates data at higher temperatures, and overestimates them at lower temperatures on the average. Note that fO2 is not explicitly considered here, leading to additional sources of error:
To obtain diffusion coefficients along [100] and [010], log 6 needs to be subtracted from each of the above equations. An erratum to this article can be found at  相似文献   
48.
周涛发  刘晓东 《岩石学报》2000,16(4):551-558
文章基于矿床地质特征和地球化学热力学理论,计算和讨论了安微月山矽卡岩-热液型铜,金矿田成矿流体中成矿物质的迁移形式和沉淀的物理化学条件,两类矿床的主要成矿阶段,成矿流体中铜主要以氯络合物CuCl、CuCl2^-、CuCl^2-3,CuClOH,金主要以硫的络合物Au2(HS)2S^2-,Au(HS)2^-,AuHS、AuH3SiO4等形式进行迁移,成矿流体中铜沉淀的主要物化条件是降温及氯离子浓度的  相似文献   
49.
CaMg(CO3)2在现代海水中是过饱和的,但是前人的研究发现在实验室标准状态下(25℃,1atm)无法从海水中直接沉淀出白云石,所以,白云石的形成不是一个单纯的热力学问题,而是一个动力学问题。依据白云石形成的热力学和动力学特征,将白云岩的形成环境划分为表生成岩环境与埋藏成岩环境。表生成岩环境按白云岩发育位置又分为:潮坪-澙湖蒸发环境、环礁潜流面与深?粱肪场B癫爻裳腋萘魈褰胩逑?的方式又分为:与裂缝相关的埋藏成岩、与缝合线相关的埋藏成岩、与岩溶相关的埋藏成岩和与渗透回流相关的浅埋藏成岩。分别对所划分的各成岩环境进行了详细的岩石学与地球化学特征分析与讨论。  相似文献   
50.
岩石中固定铵的矿床地球化学   总被引:6,自引:0,他引:6  
讨论了各种地质流体介质中的铵(氨)的有关的一些热力学实验和推导,汇总了固定铵在在矿物学,岩石学及矿床勘探的有关研究成果,最后探讨了固定铵的矿床地球化学研究中的关键问题及在中国地区应用的可能性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号