首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   27篇
  国内免费   39篇
测绘学   1篇
地球物理   51篇
地质学   126篇
海洋学   8篇
天文学   1篇
综合类   6篇
自然地理   12篇
  2024年   4篇
  2023年   1篇
  2022年   8篇
  2021年   5篇
  2020年   9篇
  2019年   7篇
  2018年   3篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   12篇
  2011年   7篇
  2010年   7篇
  2009年   11篇
  2008年   8篇
  2007年   9篇
  2006年   15篇
  2005年   9篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
排序方式: 共有205条查询结果,搜索用时 0 毫秒
121.
依-舒地堑是大庆油田的主探区之一,下第三系是主要勘探目的层,准确地建立地层格架是油气勘探的基础。在占有大量资料的基础上,采用数理统计分析方法,建立了测井曲线、微量元素分层模式,有效地解决了测井曲线局部干扰和地层分析实验样品量少的问题。在综合考虑6种因素的基础上,以生物层序和构造层序单元为基础,建立了依-舒地堑的整体地层格架,提出了依-舒地堑统一地层格架对比方案,指出T5、T3、T1地震反射层具有构造旋回意义,代表盆地演化的不同阶段,T4、T2地震反射层具有沉积学以及气候层序的意义。  相似文献   
122.
青藏高原内部的近东西向伸展变形在藏南地区形成了一系列近南北向裂谷带,对其中最东端的错那-沃卡裂谷带南段错那-拿日雍错地堑调查结果表明,它是第四纪活动明显的半地堑式断陷盆地。控制该盆地发育的主边界断裂带是近南北走向、倾向东侧和长80~110km左右的盆地西缘正断层,是区域内N90°~92°E方向伸展变形的产物。断裂活动速率的多种估算结果表明,该断裂带百万年时间尺度的平均垂直活动速率介于0.2~0.9mm/a之间;MIS 8和MIS 6以来的断裂平均活动速率的合理估计值是0.6±0.2mm/a;但末次冰期盛冰阶以来的断裂平均活动速率明显增加,介于1.0~2.1mm/a之间,合理的估计值为1.3±0.3mm/a,末次冰盛期以来断裂垂直活动速率的增加极可能是该断裂带进入地震丛集期的反映。该地堑近于严格的南北走向及其与当雄-羊八井地堑相似的活动强度,指示了下地壳物质侧向流动所产生的纵向拉张作用最有利于该区近南北向裂谷带的形成。  相似文献   
123.
杨攀新  任金卫  陈正位  张俊 《地震》2010,30(3):81-89
利用ETM遥感影像与30 m分辨率的ASTER DEM数据, 构建申扎—定结地堑系北段遥感影像三维数字高程模型, 结合野外地质地貌调查结果, 对地堑系地貌特征进行总体分析。并根据对主要断裂的产状和活动性野外调查与活动断裂展布的遥感解译结果, 认为地堑系由一条东倾的铲式主要断裂和一系列同倾向和反倾向的次级断裂组成的半地堑构造。基于半地堑系模式, 将地堑系简化成书斜式模型, 根据地堑的沉降量和地堑宽度值, 计算地堑系的滑脱面深度在3.6~9.7 km之间, 因此地堑中地震震源深度也多集中于滑脱面附近。最后探讨地堑的形成机制, 表明在印度板块的挤压作用下, 高原上地壳与下地壳发生应力解耦, 上地壳在重力作用下, 向南向东发生滑脱, 形成东倾的半地堑构造。  相似文献   
124.
《International Geology Review》2012,54(12):1401-1418
The Neogene–Quaternary succession in the Kütahya region is of importance in the neotectonic evolution of western Anatolia because the strata contain clear evidence of compression and extension. During the early-middle Miocene, N–S compression/transpression as well as NE–SW- and NW–SE-oriented oblique conjugate faults formed. NE–SW-oriented horsts and grabens developed, controlled by the dominant NE–SW faults. The Seyitömer and Sabuncup?nar grabens were filled primarily by terrestrial clastic sedimentary and volcanic rocks. At the end of the middle Miocene, the graben fill was locally folded and reverse faulted, reflecting reactivation of compression. Between the late Miocene and the middle Pliocene, the region underwent erosion and lacustrine sediments accumulated in topographic lows. Between the middle and late Pliocene, compression in the region was again reactivated and basal units were thrust over the pre-upper Pliocene units. The late Plio-Quaternary marked the onset of N–S extension and development of the NW–SE-oriented Kütahya Graben, co-genetic equivalents of which are common throughout western Anatolia. This study indicates that tectonic evolution of western Anatolia involved multiple stages of contraction and extension.  相似文献   
125.
126.
侯马盆地冲积扇及其流域地貌发育规律   总被引:4,自引:0,他引:4  
根据从DEM数据中提取的侯马盆地冲积扇及其流域的多项地貌指标,分析了各地貌指标的空间分布规律,并通过地貌指标的空间分布曲线与山前地形高程曲线形态的对比以及地貌指标相关性分析来揭示冲积扇及其流域地貌的发育规律。结果表明,在侯马盆地相对隆起部位的冲积扇及其流域的地貌指标与在盆地凹陷部位的冲积扇及其流域的地貌指标有较大差异;流域地貌指标的空间分布受到盆地边界断层构造活动性的影响;冲积扇的发育主要受到流域规模、山前构造活动以及盆地基准面等多种因素共同的影响;流域内岩性的差异不是造成研究区域内冲积扇地貌差异的主要因素。  相似文献   
127.
王家豪 《地质学报》2009,83(4):550-557
伊通地堑是我国东部中-新生代发育的走滑-伸展盆地。地震剖面解释和钻井岩芯观察表明,伊通地堑古近系永一段底部发育一个面积>400km2、厚达250m的大型湖底扇,作为永一段层序的低位扇体,其主要由细-中砂岩和少量砂砾岩组成,砂岩中含较多砂岩角砾、泥岩碎块或泥砾,卷曲纹理、液化变形、球状-枕状构造、微断层等准同生变形构造十分发育,体现了湖底扇主要为滑塌型水下泥石流沉积。在下伏奢岭组沉积之后,研究区遭受了构造反转挤压和抬升剥蚀;随后发生强烈的正断活动,并伴随火山喷发和地震活动,永一段湖底扇正是这些构造事件综合作用的结果,其发育预示着新一幕构造沉降的开始和盆地进入新的演化阶段。尽管扇体规模较大,但由于岩性结构混杂,储层物性极差,不利于油气藏的形成。  相似文献   
128.
Fault-propagation folding associated with an upward propagating fault in the Gilbertown graben system is revealed by well-based 3-D subsurface mapping and dipmeter analysis. The fold is developed in the Selma chalk, which is an oil reservoir along the southern margin of the graben. Area-depth-strain analysis suggests that the Cretaceous strata were growth units, the Jurassic strata were pregrowth units, and the graben system is detached in the Louann Salt.The growth trishear model has been applied in this paper to study the evolution and kinematics of extensional fault-propagation folding. Models indicate that the propagation to slip (p/s) ratio of the underlying fault plays an important role in governing the geometry of the resulting extensional fault-propagation fold. With a greater p/s ratio, the fold is more localized in the vicinity of the propagating fault. The extensional fault-propagation fold in the Gilbertown graben is modeled by both a compactional and a non-compactional growth trishear model. Both models predict a similar geometry of the extensional fault-propagation fold. The trishear model with compaction best predicts the fold geometry.  相似文献   
129.
《Geodinamica Acta》2013,26(3-4):167-208
The Denizli graben-horst system (DGHS) is located at the eastern-southeastern converging tips of three well-identified major grabens, the Gediz, the Küçük Menderes and the Büyük Menderes grabens, in the west Anatolian extensional province. It forms a structural link between these grabens and the other three NE-NW-trending grabens—the Çivril, the Ac?göl and the Burdur grabens—comprising the western limb of the Isparta Angle. Therefore, the DGHS has a critical role in the evolutionary history of continental extension and its eastward continuation in southwestern Turkey, including western Anatolia, west-central Anatolia, and the Isparta Angle. The DGHS is a 7-28-km wide, 62-km long, actively growing and very young rift developed upon metamorphic rocks of both the Menderes Massif and the Lycian nappes, and their Oligocene-Lower Miocene cover sequence. It consists of one incipient major graben, one modern major graben, two sub-grabens and two intervening sub-horsts evolved on the four palaeotectonic blocks. Therefore, the DGHS displays different trends along its length, namely, NW, E-W, NE and again E-W.

The DGHS has evolved episodically rather than continuously. This is indicated by a series of evidence: (1) it contains two graben infills, the ancient graben infill and the modern graben infill, separated by an intervening angular unconformity; (2) the ancient graben infill consists of two Middle Miocene-Middle Pliocene sequences of 660 m thickness accumulated in a fluvio-lacustrine depositional setting under the control of first NNW-SSE- and later NNE-SSW-directed extension (first-stage extension), and deformed (folded and strike-slip faulted) by a NNE-SSW- to ENE-WSW-directed phase of compression in the latest Middle Pliocene, whereas the modern graben infill consists of 350-m thick, undeformed (except for local areas against the margin-bounding active faults), nearly flat-lying fanapron deposits and travertines of Plio-Quaternary age; (3) the ancient graben infill is confined not only to the interior of the graben but is also exposed well outside and farther away from the graben, whereas the modern graben infill is restricted to only the interior of the graben. These lines of evidence imply an episodic, two-stage extensional evolutionary history interrupted by an intervening compressional episode for the DGHS.

Both the southern and northern margin-bounding faults of the DGHS are oblique-slip normal faults with minor right- and/or left-lateral strike-slip components. They are mapped and classified into six categories, and named the Babada?, Honaz, A?a??da?dere, Küçükmal?da?, Pamukkale and Kaleköy fault zones, and composed of 0.5-36-km long fault segments linked by a number of relay ramps. Total throw amounts accumulated on both the northern and southern margin-bounding faults are 1,050 m and 2,080 m, respectively. In addition, the maximum width of the DGHS and the thickness of the crust beneath it are more or less same (~ 28 km). The total of these values indicate a vertical slip rate of 0.15-0.14 mm/year and averaging 7% extension for the asymmetrical DGHS.

The master faults of the Babada?, Honaz, Küçükmal?da?, Pamukkale and Kaleköy fault zones are still active and have a potential seismicity with magnitudes 6 or higher. This is indicated by both the historical (1703 and 1717 seismic events) to recent (1965, 1976, 2000 seismic events) earthquakes sourced from margin-bounding faults and some diagnostic morphotectonic features, such as deflected drainage system, degraded alluvial fans with apices adjacent to fault traces, back-tilting of fault-bounded blocks, and actively growing travertine occurrences. The kinematic analyses of main fault-slip-plane data, Upper Quaternary fissure ridges and focal-mechanism solutions of some destructive earthquakes clearly indicate that the current continental extension (second-stage extension) by normal faulting in the DGHS continues in a (mean) 026° to 034° (NNE-SSW) direction.

Detailed and recent field geological mapping, stratigraphy of the Miocene-Quaternary basins, palaeostress analysis of fault populations and main margin-bounding faults of these basins, extensional gashes to fissures, and focal-mechanism solutions of destructive earth-quakes that have occurred in last century strongly indicate that extension is not unidirectional and confined only to western Anatolia, but also continues farther east across the Isparta Angle and west-central Anatolia, up to the Salt Lake fault zone in the east and the inönü-Eski?ehir fault zone in the north-northeast. Therefore, the term “southwest Turkey extensional province” is proposed in lieu of the term “west Anatolian extensional province”.  相似文献   
130.
许俊奇 《内陆地震》1991,5(1):36-41
利用极值理论、最大熵原理、周期图分析、震级—频度关系等六种方法分别讨论渭河盆地地震发生的规律性,得出预测结果:(1)渭河盆地今后一百年内(即2078年前后)有可能发生Ms≥5.0级的地震,而发生Ms>5.5级地震的可能性较小;(2)Ms=5.0—5.5级地震的复发周期分别为67年和154年左右;(3)自1400年以来,5.0级以上的地震活动存在着510±10年、250±10年、120±10年、80±10年和170±10年的主要周期。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号