首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8312篇
  免费   2118篇
  国内免费   1967篇
测绘学   58篇
大气科学   248篇
地球物理   1031篇
地质学   8496篇
海洋学   973篇
天文学   11篇
综合类   296篇
自然地理   1284篇
  2024年   118篇
  2023年   288篇
  2022年   467篇
  2021年   570篇
  2020年   466篇
  2019年   581篇
  2018年   491篇
  2017年   598篇
  2016年   651篇
  2015年   524篇
  2014年   624篇
  2013年   646篇
  2012年   592篇
  2011年   557篇
  2010年   509篇
  2009年   600篇
  2008年   515篇
  2007年   550篇
  2006年   444篇
  2005年   414篇
  2004年   324篇
  2003年   287篇
  2002年   250篇
  2001年   188篇
  2000年   165篇
  1999年   188篇
  1998年   124篇
  1997年   130篇
  1996年   102篇
  1995年   80篇
  1994年   86篇
  1993年   56篇
  1992年   76篇
  1991年   44篇
  1990年   21篇
  1989年   19篇
  1988年   18篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   6篇
  1979年   5篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
巴西盐下湖相碳酸盐岩是现今海外油气勘探的热点领域, 但中国关于该类储层特征的研究相对薄弱。通过综合应用岩心、薄片、物性测试等资料, 系统研究了储层岩石类型、储集空间类型、储层物性特征、成岩作用类型及其对物性的影响情况。研究表明微生物灰岩和生物碎屑灰岩是盆地的主要储层类型, 其中微生物灰岩由叠层石和鲕粒灰岩互层组成, 生物碎屑灰岩由贝壳灰岩组成。盐下微生物灰岩储层的孔隙类型以溶孔、晶间孔、粒间孔等次生孔隙和受过改造的原生孔隙为主; 生物碎屑灰岩储层的孔隙类型以铸模孔、溶孔、溶洞及晶间孔为主。盐下湖相碳酸盐岩储层整体物性较好, 具有中-高孔渗特征; 白云岩化和溶蚀作用是改善盐下湖相碳酸盐岩储层的主要成岩作用类型, 储层主要处于中成岩阶段, 少量处于早成岩阶段。  相似文献   
102.
综述了马努斯海盆热液区构造特征、基底差异, 结合马努斯海盆热液区热液活动与构造-岩浆特征, 探讨了二者的耦合关系, 以及构造-岩浆作用对热液活动的影响和控制。马努斯海盆位于西南太平洋俾斯麦海的东北部, 是世界上扩张速度最快的海盆之一。马努斯海盆西部(马努斯扩张中心, Manus Spreading Center, MSC)主要由海盆扩张成熟期产生的大洋中脊玄武岩组成, 属于成熟弧后扩张中心,发育Vienna Woods热液区; 海盆东部(东南裂谷, Southeast Rift, SER)则是一个拉张裂谷, 处于扩张的早期阶段, 属于不成熟弧后扩张中心, 发育PACMANUS、DESMOS、SuSu Knolls三大热液区。MSC与大洋中脊的热液活动相似, 而SER因受到火山、俯冲作用影响更为显著, 其热液流体具有岩浆流体和俯冲流体的特征。与Vienna Woods热液压相比, PACMANUS、DESMOS以及SuSu Knolls三个热液区的水深相对较浅(1 150~1 740 m), 是地球内部热物质由内向外迁移的结果, 其下部岩浆作用强烈。此外,岩浆脱气作用和数值模拟结果表明, PACMANUS热液系统中具有岩浆流体的输入。与Vienna Woods热液区相比, PACMANUS、DESMOS、SuSu Knolls热液区的热液活动强度及流体组成主要受控于岩浆作用。  相似文献   
103.
The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontological data, successions since ~3.0 Ma can be defined as one composite sequence, consist of a set of regional transgressive to regressive sequences. They can be further divided into six 3 rd order sequences(SQ0–SQ5) based on the Exxon sequence stratigraphic model. Since ~1.6 Ma, five sets of deltaic systems characterized by development of wedge-shaped foresets complexes or clinoforms had been identified. High-resolution seismic data and the thick foresets allowed further divided of sub-depositional sequences(4 th order) of regression to transgression, which is basically consistent with published stacked benthic foram O-isotope records. Depositional systems identified in the study area include deltaic deposits(inner-shelf deltas and shelf-edge deltas), incised valleys, and slope slumping massive deposits. Since ~1.6 Ma, clinoforms prograded from the southern Panyu Lower Uplift toward the northern Baiyun Depression, shelf slope break migrated seaward, whereas the shelf edge of SQ0 migrated landward. The development of incised valleys in the continental shelf increased upward,especially intensive on the SB3 and SB2. The slumping massive deposits increased abruptly since SB2, which corresponds to the development of incised valleys. The evolution of depositional systems of continental slope mainly controlled by the combined influence of sea level changes, tectonic movements, sediment supply and climate changes. Since ~3.0 Ma, relative sea level of the northern SCS had been experienced transgression(~3.0 Ma BP) to regression(~1.6 Ma BP). The regional regression and maximum transgressions of the composite sequences were apparently enhanced by uplift or subsidence related to tectono-thermal events. In addition,climatic variations including monsoon intensification and the mid-Pleistocene transition may have enhanced sediment supply by increasing erosion rate and have an indispensable influence on the development of the incised valleys and 5 sets of deltaic systems since ~1.6 Ma.  相似文献   
104.
The Flemish Pass Basin is a deep-water basin located offshore on the continental passive margin of the Grand Banks, eastern Newfoundland, which is currently a hydrocarbon exploration target. The current study investigates the petrographic characteristics and origin of carbonate cements in the Ti-3 Member, a primary clastic reservoir interval of the Bodhrán Formation (Upper Jurassic) in the Flemish Pass Basin.The Ti-3 sandstones with average Q86.0F3.1R10.9 contain various diagenetic minerals, including calcite, pyrite, quartz overgrowth, dolomite and siderite. Based on the volume of calcite cement, the investigated sandstones can be classified into (1) calcite-cemented intervals (>20% calcite), and (2) poorly calcite-cemented intervals (porous). Petrographic analysis shows that the dominant cement is intergranular poikilotopic (300–500 μm) calcite, which stared to form extensively at early diagenesis. The precipitation of calcite occured after feldspar leaching and was followed by corrosion of quartz grains. Intergranular calcite cement hosts all-liquid inclusions mainly in the crystal core, but rare primary two-phase (liquid and vapor) fluid inclusions in the rims ((with mean homogenization temperature (Th) of 70.2 ± 4.9 °C and salinity estimates of 8.8 ± 1.2 eq. wt.% NaCl). The mean δ18O and δ13C isotopic compositions of the intergranular calcite are −8.3 ± 1.2‰, VPDB and −3.0 ± 1.3‰, VPDB, respectively; whereas, fracture-filling calcite has more depleted δ18O but similar δ13C values. The shale normalized rare earth element (REESN) patterns of calcite are generally parallel and exhibit slightly negative Ce anomalies and positive Eu anomalies. Fluid-inclusion gas ratios (CO2/CH4 and N2/Ar) of calcite cement further confirms that diagenetic fluids originated from modified seawater. Combined evidence from petrographic, microthermometric and geochemical analyses suggest that (1) the intergranular calcite cement precipitated from diagenetic fluids of mixed marine and meteoric (riverine) waters in suboxic conditions; (2)the cement was sourced from the oxidation of organic matters and the dissolution of biogenic marine carbonates within sandstone beds or adjacent silty mudstones; and (3) the late phases of the intergranular and fracture-filling calcite cements were deposited from hot circulated basinal fluids.Calcite cementation acts as a main controlling factor on the reservoir quality in the Flemish Pass reservoir sandstones. Over 75% of initial porosity was lost due to the early calcite cementation. The development of secondary porosity (mostly enlarged, moldic pores) and throats by later calcite dissolution due to maturation of organic matters (e.g., hydrocarbon and coals), was the key process in improving the reservoir quality.  相似文献   
105.
Jurassic-Cretaceous rift successions and basin geometries of the Sverdrup Basin are reconstructed from a review and integration of stratigraphy, igneous records, outcrop maps, and subsurface data. The rift onset unconformity is in the Lower Jurassic portion of the Heiberg Group (approximately 200–190 Ma). Facies transgress from early syn-rift sandstones of the King Christian Formation to marine mudstones of the Jameson Bay Formation. The syn-rift succession of marine mudstones in the basin centre, Jameson Bay to Deer Bay formations, ranges from Early Jurassic (Pleinsbachian) to Early Cretaceous (Valanginian). Early post-rift deposits of the lower Isachsen Formation are truncated by the sub-Hauterivian unconformity, which is interpreted as a break up unconformity at approximately 135–130 Ma. Cessation of rift subsidence allowed for late post-rift sandstone deposits of the Isachsen Formation to be distributed across the entire basin. Marine deposition to form mudstone of the Christopher Formation throughout the Canadian Arctic Islands and outside of the rift basin records establishment of a broad marine shelf during post-rift thermal subsidence at the start of a passive margin stage. The onset of the High Arctic Large Igneous Province at approximately 130 Ma appears to coincide with the breakup unconformity, and it is quite typical that magma-poor rifted margins have mainly post-rift igneous rocks. We extend the magma-poor characterization where rifting is driven by lithospheric extension, to speculatively consider that the records from Sverdrup Basin are consistent with tectonic models of retro-arc extension and intra-continental rifting that have previously been proposed for the Amerasia Basin under the Arctic Ocean.  相似文献   
106.
The North Sea Basin has been subsiding during the Quaternary and contains hundreds of metres of fill. Seismic surveys (170 000 km2) provide new evidence on Early Quaternary sedimentation, from about 2.75 Ma to around the Brunhes-Matuyama boundary (0.78 Ma). We present an informal seismic stratigraphy for the Early Quaternary of the North Sea, and calculate sediment volumes for major units. Early Quaternary sediment thickness is > 1000 m in the northern basin and >700 m in the central basin (total about 40 000 km3). Northern North Sea basin-fill comprises several clinoform units, prograding westward over 60 000 km2. Architecture of the central basin also comprises clinoforms, building from the southeast. To the west, an acoustically layered and mounded unit (Unit Z) was deposited. Remaining accommodation space was filled with fine-grained sediments of two Central Basin units. Above these units, an Upper Regional Unconformity-equivalent (URU) records a conformable surface with flat-lying units that indicate stronger direct glacial influence than on the sediments below. On the North Sea Plateau north of 59°N, the Upper Regional Unconformity (URU) is defined by a shift from westward to eastward dipping seismic reflectors, recording a major change in sedimentation, with the Shetland Platform becoming a significant source. A model of Early Quaternary sediment delivery to the North Sea shows sources from the Scandinavian ice sheet and major European rivers. Clinoforms prograding west in the northern North Sea Basin, representing glacigenic debris flows, indicate an ice sheet on the western Scandinavian margin. In the central basin, sediments are generally fine-grained, suggesting a distal fluvial or glacifluvial origin from European rivers. Ploughmarks also demonstrate that icebergs, derived from an ice sheet to the north, drifted into the central North Sea Basin. By contrast, sediments and glacial landforms above the URU provide evidence for the later presence of a grounded ice sheet.  相似文献   
107.
The Malay Basin is located offshore West Malaysia in the South China Sea, within north central region of 1st order Sunda Block. The basin developed partly as a result of tectonic collisions and strike-slip shear of the Southeast Asia continental slabs, as the Indian Plate collided into Eurasia, and subsequent extrusion of lithospheric blocks towards Indochina. The Sunda Block epicontinental earliest rift margins were manifested by the Palaeogene W–E rift valleys, which formed during NW–SE sinistral shear of the region. Later Eocene NW–SE dextral shear of (2nd order) Indochina Block against East Malaya Block rifted open a 3rd order Malay Basin. Developed within it is a series of 4th order N–S en-echelon ridges and grabens. The grabens and some ridges, sequentially, host W–E trending 5th order folds of later compressional episodes. The Malay Basin Ridge and Graben Model explains the multi-phased structural deformation which started with, the a) Pre-Rift Palaeo/Mesozoic crystalline/metamorphic Basement, b) Synrift phase during Paleogene, c) Fast Subsidence from Late Oligocene to Middle Miocene, d) Compressional inversion of first Sunda fold during Late Miocene, and e) Basin Sag during Plio-Pleistocene with mild compressional episodes. The subsequent Mio-Pliocene folding history of Malay Basin is connected to the collision of Sunda Block against subducting Indian–Australian Plate. This Neogene Sunda tectonics, to some degree after the cessation of South China Sea spreading, is due to the diachronous collision along the 1st order plate margins between SE Asia and Australia.  相似文献   
108.
Identification of the main hydrocarbon source rocks of the large Puguang gas field (northeastern Sichuan Basin, southwest China) has been the subject of much discussion in recent years. A key aspect has been the lack of a comprehensive understanding of the development of hydrocarbon source rocks of the Upper Permian Longtan Formation, which had been thought to contain mainly coal seams and thick carbonate layers. In this paper, based on geological data from more than ten wells and outcrops and their related mineralogy and geochemistry, we investigated the depositional environment and main factors controlling organic matter enrichment in the Longtan Formation. We propose a model which combines information on the geological environment and biological changes over time. In the model, organic matter from prolific phytoplankton blooms was deposited in quiescent platform interior sags with rising sea-levels. During the Longtan period, the area from Bazhong to Dazhou was a platform interior sag with relatively deep water and a closed environment, which was controlled by multiple factors including syngenetic fault settling, isolation of submarine uplifts and rising sea-levels leading to water column stratification. Although the bottom water was anoxic, the phytoplankton were able to bloom in the well-lit upper euphotic zone thus giving rise to a set of sapropelic black shales and marlstones containing mostly algal organic matter with minor terrestrial contributions. As a consequence, these rocks have a high hydrocarbon generation potentials and can be classified as high-quality source rocks. The area from Bazhong to Dazhou is a center of hydrocarbon generation, being the main source of reservoired paleo-oils and presently discovered as pyrobitumen in the Puguang gas field. The identification of these source rocks is very important to guide future petroleum exploration in the northeastern Sichuan Basin.  相似文献   
109.
Gas occurrences consisting of carbon dioxide (CO2), hydrogen sulfide (H2S), and hydrocarbon (HC) gases and oil within the Dodan Field in southeastern Turkey are located in Cretaceous carbonate reservoir rocks in the Garzan and Mardin Formations. The aim of this study was to determine gas composition and to define the origin of gases in Dodan Field. For this purpose, gas samples were analyzed for their molecular and isotopic composition. The isotopic composition of CO2, with values of −1.5‰ and −2.8‰, suggested abiogenic origin from limestone. δ34S values of H2S ranged from +11.9 to +13.4‰. H2S is most likely formed from thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) within the Bakuk Formation. The Bakuk Formation is composed of a dolomite dominated carbonate succession also containing anhydrite. TSR may occur within an evaporitic environment at temperatures of approximately 120–145 °C. Basin modeling revealed that these temperatures were reached within the Bakuk Formation at 10 Ma. Furthermore, sulfate reducing bacteria were found in oil–water phase samples from Dodan Field. As a result, the H2S in Dodan Field can be considered to have formed by BSR and TSR.As indicated by their isotopic composition, HC gases are of thermogenic origin and were generated within the Upper Permian Kas and Gomaniibrik Formations. As indicated by the heavier isotopic composition of methane and ethane, HC gases were later altered by TSR. Based on our results, the Dodan gas field may have formed as a result of the interaction of the following processes during the last 7–8 Ma: 1) thermogenic gas generation in Permian source rocks, 2) the formation of thrust faults, 3) the lateral-up dip migration of HC-gases due to thrust faults from the Kas Formation into the Bakuk Formation, 4) the formation of H2S and CO2 by TSR within the Bakuk Formation, 5) the vertical migration of gases into reservoirs through the thrust fault, and 6) lateral-up dip migration within reservoir rocks toward the Dodan structure.  相似文献   
110.
The influences of the hydrological features and environmental conditions in the phytoplankton community found in the Campos Basin area in the Atlantic Ocean (20° to 25°S; 42° to 38°W) were studied using HPLC/CHEMTAX pigment analysis. Samples were collected at 72 stations distributed along the 25–3000 m isobaths at two depths during two seasonal periods (rainy and dry). Seven taxonomic groups of phytoplankton were detected (diatoms, dinoflagellates, prasinophytes, cryptophytes, haptophytes, pelagophytes and cyanobacteria). Redundancy analysis showed that the spatial and temporal patterns observed in the distribution of the phytoplanktonic groups were primarily related to variations in the availability of light and nutrients. Nutrient variations were caused by South Atlantic Central Water seasonal intrusions over the continental shelf region. Cyanobacteria predominated in the rainy season, while diatoms, Haptophyceae and Prasinophyceae, were associated with higher nutrient availability in the dry season. In the inner shelf region, diatoms dominated and were associated with increased conditions of turbulence and nutrient availability. Haptophytes and prasinophytes were predominant on the outer shelf and shelf-break regions associated with high nutrient concentrations and availability of light. Prochlorococcus was related to oceanic waters (in both dry and rainy periods) or to low nutrient/strongly stratified shelf waters (rainy period). In contrast, Synechococcus was widely distributed in both the shelf and oceanic regions. Variation in the quality of light between coastal and oceanic waters was probably responsible for the distributions observed. Through HPLC/CHEMTAX pigment analysis we have developed a detailed picture of the influence of hydrological regime on the dynamics of the phytoplankton community in an under-studied shelf/ocean system in the tropical southern Atlantic Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号